Refine
Year of publication
Document Type
- Article (reviewed) (422) (remove)
Has Fulltext
- no (422) (remove)
Is part of the Bibliography
- yes (422) (remove)
Keywords
- Dünnschichtchromatographie (16)
- Adsorption (11)
- Metallorganisches Netzwerk (9)
- Ermüdung (8)
- Lithiumbatterie (8)
- Energieversorgung (6)
- Intelligentes Stromnetz (6)
- Simulation (6)
- Brennstoffzelle (5)
- Haustechnik (5)
Institute
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (165)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (135)
- INES - Institut für Energiesystemtechnik (64)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (51)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (49)
- Fakultät Medien und Informationswesen (M+I) (14)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (7)
- IfTI - Institute for Trade and Innovation (5)
- IUAS - Institute for Unmanned Aerial Systems (4)
- POIM - Peter Osypka Institute of Medical Engineering (ab 21.10.2020) (4)
This article presents a comparative experimental study of the electrical, structural and chemical properties of large‐format, 180 Ah prismatic lithium iron phosphate (LFP)/graphite lithium‐ion battery cells from two different manufacturers. These cells are particularly used in the field of stationary energy storage such as home‐storage systems. The investigations include (1) cell‐to‐cell performance assessment, for which a total of 28 cells was tested from each manufacturer, (2) electrical charge/discharge characteristics at different currents and ambient temperatures, (3) internal cell geometries, components, and weight analysis after cell opening, (4) microstructural analysis of the electrodes via light microscopy and scanning electron microscopy, (5) chemical analysis of the electrode materials using energy‐dispersive X‐ray spectroscopy, and (6) mathematical analysis of the electrode balances. The combined results give a detailed and comparative insight into the cell characteristics, providing essential information needed for system integration. The study also provides complete and self‐consistent parameter sets for the use in cells models needed for performance prediction or state diagnosis.
A Simple and Reliable HPTLC Method for the Quantification of the Intense Sweetener Sucralose®
(2003)
This paper describes a simple and fast thin layer chromatography (TLC) method for the monitoring of the relatively new intense sweetener Sucralose® in various food matrices. The method requires little or no sample preparation to isolate or concentrate the analyte. The Sucralose® extract is separated on amino‐TLC‐plates, and the analyte is derivatized “reagent‐free” by heating the developed plate for 20 min at 190°C. Spots can be measured either in the absorption or fluorescence mode. The method allows the determination of Sucralose® at the levels of interest regarding foreseen European legislation (>50 mg/kg) with excellent repeatability (RSD = 3.4%) and recovery data (95%).
Quantification of astaxanthin in salmons by chemiluminescence and absorption after TLC separation
(2018)
Astaxanthin is a keto-carotenoid, belongs to the chemical class of terpenes and is a yellow lipid soluble compound. The compound is present in marine animals like salmons and crustacean. Its colour is due to conjugated double bonds and these double bonds are responsible for its antioxidant effect. Its antioxidant activity is ten times stronger than other carotenoids and nearly 500 fold stronger than vitamin-E. We present a new thin layer chromatography (TLC) method to measure astaxanthin on TLC-plates (Merck, 1.05554) in the visible absorption range as well as by using chemiluminescence. For separation a solvent mixture of cyclohexane and acetone (10 + 2.4, v/v) was used. The RF-value of astaxanthin is 0.14.The limit of detection in vis-absorption is 64 ng / band and the limit of quantification is 92 ng/band. In chemiluminescence the values are 90 ng / band and 115 ng/band. The method offers two independently working measurement modes on a single plate which increase the accuracy of the quantification.
In dieser Arbeit wird ein historischer Fallbericht des bis heute weit über seine Landesgrenzen
bekannten italienischen Kriminalanthropologen Cesare Lombroso (1835–1909)
vorgestellt. In diesem Fallbericht wird der berüchtigte und psychisch auffällige Dieb Pietro
Bersone mit Hilfe eines sog. Hydrosphygmographen überführt, einem zur damaligen Zeit
neuartigen technischen Gerät, das den Puls nicht-invasiv aufzeichnen konnte. Lombroso ist
vermutlich einer der ersten, wenn nicht sogar der erste, der durch den Einsatz eines solchen
Geräts die Idee zum „Lügendetektor“ vorweggenommen hat. Die vorgestellte Textstelle aus
Lombrosos Buch „Neue Fortschritte in den Verbrecherstudien“ ist daher ein besonderes
Fundstück auch für die Geschichte der Polygraphie.
Modern Franciscan Leadership
(2020)
This article combines two important areas of practical theology: Monastic rules and leadership in a cloistral organisation, using the Rule of Saint Francis as a prominent example. The aim of this research is to examine how living Christian tradition in a monastic order affects leadership today, discovering how the Rule and Franciscan spirituality impact managing a convent. The research question is answered within this inductive research applying the methodology of the ‘theology in four voices.’ Based on the results, it is possible to build a coherent leadership system based on Biblical and Franciscan sources.
The authors claim that location information of stationary ICT components can never be unclassified. They describe how swarm-mapping crowd sourcing is used by Apple and Google to worldwide harvest geo-location information on wireless access points and mobile telecommunication systems' base stations to build up gigantic databases with very exclusive access rights. After having highlighted the known technical facts, in the speculative part of this article, the authors argue how this may impact cyber deterrence strategies of states and alliances understanding the cyberspace as another domain of geostrategic relevance. The states and alliances spectrum of activities due to the potential existence of such databases may range from geopolitical negotiations by institutions understanding international affairs as their core business, mitigation approaches at a technical level, over means of cyber deterrence-by-retaliation.
Analysis of Miniaturized Printed Flexible RFID/NFC Antennas Using Different Carrier Substrates
(2020)
Antennas for Radio Frequency Identification (RFID) provide benefits for high frequencies (HF) and wireless data transmission via Near Field Communication (NFC) and many other applications. In this case, various requirements for the design of the reader and transmitter antennas must be met in order to achieve a suitable transmission quality. In this work, a miniaturized cost-effective RFID/NFC antenna for a microelectronic measurement system is designed and printed on different flexible carrier substrates using a new and low-cost Direct Ink Writing (DIW) technology. Various practical aspects such as reflection and impedance magnitude as well as the behavior of the printed RFID/NFC antennas are analyzed and compared to an identical copper-based antenna of the same size. The results are presented in this paper. Furthermore, the problems during the printing process itself on the different substrates are evaluated. The effects of the characteristics on the antenna under kink-free bending tests are examined and subsequently long-term measurements are carried out.
Time-Sensitive Networking (TSN) is the most promising time-deterministic wired communication approach for industrial applications. To extend TSN to "IEEE 802.11" wireless networks two challenging problems must be solved: synchronization and scheduling. This paper is focused on the first one. Even though a few solutions already meet the required synchronization accuracies, they are built on expensive hardware that is not suited for mass market products. While next Wi-Fi generation might support the required functionalities, this paper proposes a novel method that makes possible high-precision wireless synchronization using commercial low-cost components. With the proposed solution, a standard deviation of synchronization error of less than 500 ns can be achieved for many use cases and system loads on both CPU and network. This performance is comparable to modern wired real-time field busses, which makes the developed method a significant contribution for the extension of the TSN protocol to the wireless domain.
Propagation of acoustic waves is considered in a system consisting of two stiff quarter-spaces connected by a planar soft layer. The two quarter-spaces and the layer form a half-space with a planar surface. In a numerical study, surface waves have been found and analyzed in this system with displacements that are localized not only at the surface, but also in the soft layer. In addition to the semi-analytical finite element method, an alternative approach based on an expansion of the displacement field in a double series of Laguerre functions and Legendre polynomials has been applied.
It is shown that a number of branches of the mode spectrum can be interpreted and remarkably well described by perturbation theory, where the zero-order modes are the wedge waves guided at a rectangular edge of the stiff quarter-spaces or waves guided at the edge of a soft plate with rigid surfaces.
For elastic moduli and densities corresponding to the material combination PMMA–silicone–PMMA, at least one of the branches in the dispersion relation of surface waves trapped in the soft layer exhibits a zero-group velocity point.
Potential applications of these 1D guided surface waves in non-destructive evaluation are discussed.
Experimental Investigation of the Air Exchange Effectiveness of Push-Pull Ventilation Devices
(2020)
The increasing installation numbers of ventilation units in residential buildings are driven by legal objectives to improve their energy efficiency. The dimensioning of a ventilation system for nearly zero energy buildings is usually based on the air flow rate desired by the clients or requested by technical regulations. However, this does not necessarily lead to a system actually able to renew the air volume of the living space effectively. In recent years decentralised systems with an alternating operation mode and fairly good energy efficiencies entered the market and following question was raised: “Does this operation mode allow an efficient air renewal?” This question can be answered experimentally by performing a tracer gas analysis. In the presented study, a total of 15 preliminary tests are carried out in a climatic chamber representing a single room equipped with two push-pull devices. The tests include summer, winter and isothermal supply air conditions since this parameter variation is missing till now for push-pull devices. Further investigations are dedicated to the effect of thermal convection due to human heat dissipation on the room air flow. In dependence on these boundary conditions, the determined air exchange efficiency varies, lagging behind the expected range 0.5 < εa < 1 in almost all cases, indicating insufficient air exchange including short-circuiting. Local air exchange values suggest inhomogeneous air renewal depending on the distance to the indoor apertures as well as the temperature gradients between in- and outdoor. The tested measurement set-up is applicable for field measurements.
In this paper, we describe the PALM model system 6.0. PALM (formerly an abbreviation for Parallelized Large-eddy Simulation Model and now an independent name) is a Fortran-based code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. This is a follow-up paper to the PALM 4.0 model description in Maronga et al. (2015). During the last years, PALM has been significantly improved and now offers a variety of new components. In particular, much effort was made to enhance the model with components needed for applications in urban environments, like fully interactive land surface and radiation schemes, chemistry, and an indoor model. This paper serves as an overview paper of the PALM 6.0 model system and we describe its current model core. The individual components for urban applications, case studies, validation runs, and issues with suitable input data are presented and discussed in a series of companion papers in this special issue.
Purpose
This work presents a new monocular peer-to-peer tracking concept overcoming the distinction between tracking tools and tracked tools for optical navigation systems. A marker model concept based on marker triplets combined with a fast and robust algorithm for assigning image feature points to the corresponding markers of the tracker is introduced. Also included is a new and fast algorithm for pose estimation.
Methods
A peer-to-peer tracker consists of seven markers, which can be tracked by other peers, and one camera which is used to track the position and orientation of other peers. The special marker layout enables a fast and robust algorithm for assigning image feature points to the correct markers. The iterative pose estimation algorithm is based on point-to-line matching with Lagrange–Newton optimization and does not rely on initial guesses. Uniformly distributed quaternions in 4D (the vertices of a hexacosichora) are used as starting points and always provide the global minimum.
Results
Experiments have shown that the marker assignment algorithm robustly assigns image feature points to the correct markers even under challenging conditions. The pose estimation algorithm works fast, robustly and always finds the correct pose of the trackers. Image processing, marker assignment, and pose estimation for two trackers are handled in less than 18 ms on an Intel i7-6700 desktop computer at 3.4 GHz.
Conclusion
The new peer-to-peer tracking concept is a valuable approach to a decentralized navigation system that offers more freedom in the operating room while providing accurate, fast, and robust results.
Additive manufacturing is a rapidly growing manufacturing process for which many new processes and materials are currently being developed. The biggest advantage is that almost any shape can be produced, while conventional manufacturing methods reach their limits. Furthermore, a lot of material is saved because the part is created in layers and only as much material is used as necessary. In contrast, in the case of machining processes, it is not uncommon for more than half of the material to be removed and disposed of. Recently, new additive manufacturing processes have been on the market that enables the manufacturing of components using the FDM process with fiber reinforcement. This opens up new possibilities for optimizing components in terms of their strength and at the same time increasing sustainability by reducing materials consumption and waste. Within the scope of this work, different types of test specimens are to be designed, manufactured and examined. The test specimens are tensile specimens, which are used both for standardized tensile tests and for examining a practical component from automotive engineering used in student project. This project is a vehicle designed to compete in the Shell Eco-marathon, one of the world’s largest energy efficiency competitions. The aim is to design a vehicle that covers a certain distance with as little fuel as possible. Accordingly, it is desirable to manufacture the components with the lowest possible weight, while still ensuring the required rigidity. To achieve this, the use of fiber-reinforced 3D-printed parts is particularly suitable due to the high rigidity. In particular, the joining technology for connecting conventionally and additively manufactured components is developed. As a result, the economic efficiency was assessed, and guidelines for the design of components and joining elements were created. In addition, it could be shown that the additive manufacturing of the component could be implemented faster and more sustainably than the previous conventional manufacturing.
Abstract: Electrode Model and Simulation of His Bundle Pacing for Cardiac Resynchronization Therapy
(2020)
Background: A disturbed synchronization of the ventricular contraction can cause a highly developed systolic heart failure in affected patients, which can often be explained by a diseased left bundle branch block (LBBB). If medication remains unresponsive, the concerned patients will be treated with a cardiac resynchronization therapy (CRT) system. The aim of this study was to integrate His bundle pacing into the Offenburg heart rhythm model in order to visualize the electrical pacing field generated by His bundle pacing.
Methods: Modelling and electrical field simulation activities were performed with the software CST (Computer Simulation Technology) from Dessault Systèms. CRT with biventricular pacing is to be achieved by an apical right ventricular electrode and an additional left ventricular electrode, which is floated into the coronary vein sinus. This conventional type of biventricular pacing leads to a reduction of the left ventricular ejection fraction. Furthermore, the non-responder rate of the CRT therapy is about one third of the CRT patients.
Results: His bundle pacing represents a physiological alternative to conventional cardiac pacing and cardiac resynchronization. An electrode implanted in the His bundle emits a stronger electrical pacing field than the electrical pacing field of conventional cardiac pacemakers. The pacing of the His bundle was performed by the Medtronic Select Secure 3830 electrode with pacing voltage amplitudes of 3 V, 2 V and 1.5 V in combination with a pacing pulse duration of 1 ms.
Conclusions: Compared to conventional cardiac pacemaker pacing, His bundle pacing is capable of bridging LBBB conduction disorders in the left ventricle. The His bundle pacing electrical field is able to spread via the physiological pathway in the right and left ventricles for CRT with a narrow QRS-complex in the surface ECG.
The three lines of defense model (TLoD) aims to provide a simple and effective way to improve coordination and enhance communications on risk management and control by clarifying the essential roles and duties of different governance functions. Without effective coordination of these governance functions, work can be duplicated or key risks may be missed or misjudged. To address these challenges, professional standards recommend that the chief audit executive (CAE) coordinates activities with other internal and external governance stakeholders (assurance providers). We consider survey responses from 415 CAEs from Austria, Germany, and Switzerland to analyze determinants that help to implement the TLoD without any challenges and to explore the extent of (coordination) challenges between the internal audit function and the respective governance stakeholders. Our results show a great variance in the extent of coordination challenges dependent on different determinants and the respective governance stakeholder.
Diffracted waves carry high‐resolution information that can help interpreting fine structural details at a scale smaller than the seismic wavelength. However, the diffraction energy tends to be weak compared to the reflected energy and is also sensitive to inaccuracies in the migration velocity, making the identification of its signal challenging. In this work, we present an innovative workflow to automatically detect scattering points in the migration dip angle domain using deep learning. By taking advantage of the different kinematic properties of reflected and diffracted waves, we separate the two types of signals by migrating the seismic amplitudes to dip angle gathers using prestack depth imaging in the local angle domain. Convolutional neural networks are a class of deep learning algorithms able to learn to extract spatial information about the data in order to identify its characteristics. They have now become the method of choice to solve supervised pattern recognition problems. In this work, we use wave equation modelling to create a large and diversified dataset of synthetic examples to train a network into identifying the probable position of scattering objects in the subsurface. After giving an intuitive introduction to diffraction imaging and deep learning and discussing some of the pitfalls of the methods, we evaluate the trained network on field data and demonstrate the validity and good generalization performance of our algorithm. We successfully identify with a high‐accuracy and high‐resolution diffraction points, including those which have a low signal to noise and reflection ratio. We also show how our method allows us to quickly scan through high dimensional data consisting of several versions of a dataset migrated with a range of velocities to overcome the strong effect of incorrect migration velocity on the diffraction signal.
Extracting horizon surfaces from key reflections in a seismic image is an important step of the interpretation process. Interpreting a reflection surface in a geologically complex area is a difficult and time-consuming task, and it requires an understanding of the 3D subsurface geometry. Common methods to help automate the process are based on tracking waveforms in a local window around manual picks. Those approaches often fail when the wavelet character lacks lateral continuity or when reflections are truncated by faults. We have formulated horizon picking as a multiclass segmentation problem and solved it by supervised training of a 3D convolutional neural network. We design an efficient architecture to analyze the data over multiple scales while keeping memory and computational needs to a practical level. To allow for uncertainties in the exact location of the reflections, we use a probabilistic formulation to express the horizons position. By using a masked loss function, we give interpreters flexibility when picking the training data. Our method allows experts to interactively improve the results of the picking by fine training the network in the more complex areas. We also determine how our algorithm can be used to extend horizons to the prestack domain by following reflections across offsets planes, even in the presence of residual moveout. We validate our approach on two field data sets and show that it yields accurate results on nontrivial reflectivity while being trained from a workable amount of manually picked data. Initial training of the network takes approximately 1 h, and the fine training and prediction on a large seismic volume take a minute at most.
Ecological concerns on the climatic effects of the emissions from electricity production stipulate the remuneration of electricity grids to accept growing amounts of intermittent regenerative electricity feed-in from wind and solar power. Germany’s eager political target to double regenerative electricity production by 2030 puts pressure on grid operators to adapt and restructure their transmission and distribution grids. The ability of local distribution grids to operate autonomous of transmission grid supply is essential to stabilize electricity supply at the level of German federal states. Although congestion management and collaboration at the distribution system operator (DSO) level are promising approaches, relatively few studies address this issue. This study presents a methodology to assess the electric energy balance for the low-voltage grids in the German federal state of Baden-Württemberg, assuming the typical load curves and the interchange potential among local distribution grids by means of linear programming of the supply function and for typical seasonal electricity demands. The model can make a statement about the performance and development requirements for grid architecture for scenarios in 2035 and 2050 when regenerative energies will—according to present legislation—account for more than half of Germany’s electricity supply. The study details the amendment to Baden-Württemberg’s electricity grid required to fit the system to the requirements of regenerative electricity production. The suggested model for grid analysis can be used in further German regions and internationally to systematically remunerate electricity grids for the acceptance of larger amounts of regenerative electricity inflows. This empirical study closes the research gap of assessing the interchange potential among DSO and considers usual power loads and simultaneously usual electricity inflows.
Background: This paper presents a novel approach for a hand prosthesis consisting of a flexible, anthropomorphic, 3D-printed replacement hand combined with a commercially available motorized orthosis that allows gripping.
Methods: A 3D light scanner was used to produce a personalized replacement hand. The wrist of the replacement hand was printed of rigid material; the rest of the hand was printed of flexible material. A standard arm liner was used to enable the user’s arm stump to be connected to the replacement hand. With computer-aided design, two different concepts were developed for the scanned hand model: In the first concept, the replacement hand was attached to the arm liner with a screw. The second concept involved attaching with a commercially available fastening system; furthermore, a skeleton was designed that was located within the flexible part of the replacement hand.
Results: 3D-multi-material printing of the two different hands was unproblematic and inexpensive. The printed hands had approximately the weight of the real hand. When testing the replacement hands with the orthosis it was possible to prove a convincing everyday functionality. For example, it was possible to grip and lift a 1-L water bottle. In addition, a pen could be held, making writing possible.
Conclusions: This first proof-of-concept study encourages further testing with users.
The findings presented in this article were obtained through a preliminary exploratory study conducted at the Offenburg University as part of the Fighting Loneliness project promoted by the institution’s Affective & Cognitive Institute (ACI) from October 2019 to February 2020. The initiative’s main objective was to answer the research question “How should an app be designed to reduce loneliness and social isolation among university students?” with the collaboration of the institution’s students.
This work compares the performance of Bluetooth Mesh implementations on real chipsets against the ideal implementation of the specification. Measurements are taken in experimental settings and reveal non-idealities in the underlying Bluetooth Low Energy specification in real chipsets and in the implementation of Mesh, which introduces an unruly transmission as well as reception behavior. These effects lead to an impact on transmission rate, reception rate, latency, as well as a more significant impact on the average power consumption.
Printed electronics (PE) enables disruptive applications in wearables, smart sensors, and healthcare since it provides mechanical flexibility, low cost, and on-demand fabrication. The progress in PE raises trust issues in the supply chain and vulnerability to reverse engineering (RE) attacks. Recently, RE attacks on PE circuits have been successfully performed, pointing out the need for countermeasures against RE, such as camouflaging. In this article, we propose a printed camouflaged logic cell that can be inserted into PE circuits to thwart RE. The proposed cell is based on three components achieved by changing the fabrication process that exploits the additive manufacturing feature of PE. These components are optically look-alike, while their electrical behaviors are different, functioning as a transistor, short, and open. The properties of the proposed cell and standard PE cells are compared in terms of voltage swing, delay, power consumption, and area. Moreover, the proposed camouflaged cell is fabricated and characterized to prove its functionality. Furthermore, numerous camouflaged components are fabricated, and their (in)distinguishability is assessed to validate their optical similarities based on the recent RE attacks on PE. The results show that the proposed cell is a promising candidate to be utilized in camouflaging PE circuits with negligible overhead.
Printed electronics (PE) is a fast-growing field with promising applications in wearables, smart sensors, and smart cards, since it provides mechanical flexibility, and low-cost, on-demand, and customizable fabrication. To secure the operation of these applications, true random number generators (TRNGs) are required to generate unpredictable bits for cryptographic functions and padding. However, since the additive fabrication process of the PE circuits results in high intrinsic variations due to the random dispersion of the printed inks on the substrate, constructing a printed TRNG is challenging. In this article, we exploit the additive customizable fabrication feature of inkjet printing to design a TRNG based on electrolyte-gated field-effect transistors (EGFETs). We also propose a printed resistor tuning flow for the TRNG circuit to mitigate the overall process variation of the TRNG so that the generated bits are mostly based on the random noise in the circuit, providing a true random behavior. The simulation results show that the overall process variation of the TRNGs is mitigated by 110 times, and the generated bitstream of the tuned TRNGs passes the National Institute of Standards and Technology - Statistical Test Suite. For the proof of concept, the proposed TRNG circuit was fabricated and tuned. The characterization results of the tuned TRNGs prove that the TRNGs generate random bitstreams at the supply voltage of down to 0.5 V. Hence, the proposed TRNG design is suitable to secure low-power applications in this domain.
Printed Electronics technology is a key-enabler for smart sensors, soft robotics, and wearables. The inkjet printed electrolyte-gated field effect transistor (EGFET) technology is a promising candidate for such applications due to its low-power operation, high field-effect mobility, and on-demand fabrication. Unlike conventional silicon-based technologies, inkjet printed electronics technology is an additive manufacturing process where multiple layers are printed on top of each other to realize functional devices such as transistors and their interconnections. Due to the additive manufacturing process, the technology has limited routing layers. For routing of complex circuits, insulating crossovers are printed at the intersection of routing paths to isolate them. The crossover can alter the electrical properties of a circuit based on specific location on a routing path. In this work, we propose a crossover-aware placement and routing (COPnR) methodology for inkjet-printed circuits by integrating the crossover constraints in our design framework. Our proposed placement methodology is based on a state-of-the-art evolutionary algorithm while the routing optimization is done using a genetic algorithm. The proposed methodology is compared with the industrial standard placement and routing (PnR) tools. On average, the proposed methodology has 38% fewer crossovers and 94% fewer failing paths compared to the industrial PnR tools applied to printed circuit designs.
Advances in printed electronics (PE) enables new applications, particularly in ultra-low-cost domains. However, achieving high-throughput printing processes and manufacturing yield is one of the major challenges in the large-scale integration of PE technology. In this article, we present a programmable printed circuit based on an efficient printed lookup table (pLUT) to address these challenges by combining the advantages of the high-throughput advanced printing and maskless point-of-use final configuration printing. We propose a novel pLUT design which is more efficient in PE realization compared to existing LUT designs. The proposed pLUT design is simulated, fabricated, and programmed as different logic functions with inkjet printed conductive ink to prove that it can realize digital circuit functionality with the use of programmability features. The measurements show that the fabricated LUT design is operable at 1 V.
High-performance Ag–Se-based n-type printed thermoelectric (TE) materials suitable for room-temperature applications have been developed through a new and facile synthesis approach. A high magnitude of the Seebeck coefficient up to 220 μV K–1 and a TE power factor larger than 500 μW m–1 K–2 for an n-type printed film are achieved. A high figure-of-merit ZT ∼0.6 for a printed material has been found in the film with a low in-plane thermal conductivity κF of ∼0.30 W m–1 K–1. Using this material for n-type legs, a flexible folded TE generator (flexTEG) of 13 thermocouples has been fabricated. The open-circuit voltage of the flexTEG for temperature differences of ΔT = 30 and 110 K is found to be 71.1 and 181.4 mV, respectively. Consequently, very high maximum output power densities pmax of 6.6 and 321 μW cm–2 are estimated for the temperature difference of ΔT = 30 K and ΔT = 110 K, respectively. The flexTEG has been demonstrated by wearing it on the lower wrist, which resulted in an output voltage of ∼72.2 mV for ΔT ≈ 30 K. Our results pave the way for widespread use in wearable devices.
Morphological transition of a rod-shaped phase into a string of spherical particles is commonly observed in the microstructures of alloys during solidification (Ratke and Mueller, 2006). This transition phenomenon can be explained by the classic Plateau-Rayleigh theory which was derived for fluid jets based on the surface area minimization principle. The quintessential work of Plateau-Rayleigh considers tiny perturbations (amplitude much less than the radius) to the continuous phase and for large amplitude perturbations, the breakup condition for the rod-shaped phase is still a knotty issue. Here, we present a concise thermodynamic model based on the surface area minimization principle as well as a non-linear stability analysis to generalize Plateau-Rayleigh’s criterion for finite amplitude perturbations. Our results demonstrate a breakup transition from a continuous phase via dispersed particles towards a uniform-radius cylinder, which has not been found previously, but is observed in our phase-field simulations. This new observation is attributed to a geometric constraint, which was overlooked in former studies. We anticipate that our results can provide further insights on microstructures with spherical particles and cylinder-shaped phases.
A Hybrid Optoelectronic Sensor Platform with an Integrated Solution‐Processed Organic Photodiode
(2020)
Hybrid systems, unifying printed electronics with silicon‐based technology, can be seen as a driving force for future sensor development. Especially interesting are sensing elements based on printed devices in combination with silicon‐based high‐performance electronics for data acquisition and communication. In this work, a hybrid system integrating a solution‐processed organic photodiode in a silicon‐based system environment, which enables flexible device measurement and application‐driven development, is presented. For performance evaluation of the integrated organic photodiode, the measurements are compared to a silicon‐based counterpart. Therefore, the steady state response of the hybrid system is presented. Promising application scenarios are described, where a solution‐processed organic photodiode is fully integrated in a silicon system.
Amorphous In-Ga-Zn-O (IGZO) is a high-mobility semiconductor employed in modern thin-film transistors for displays and it is considered as a promising material for Schottky diode-based rectifiers. Properties of the electronic components based on IGZO strongly depend on the manufacturing parameters such as the oxygen partial pressure during IGZO sputtering and post-deposition thermal annealing. In this study, we investigate the combined effect of sputtering conditions of amorphous IGZO (In:Ga:Zn=1:1:1) and post-deposition thermal annealing on the properties of vertical thin-film Pt-IGZO-Cu Schottky diodes, and evaluated the applicability of the fabricated Schottky diodes for low-frequency half-wave rectifier circuits. The change of the oxygen content in the gas mixture from 1.64% to 6.25%, and post-deposition annealing is shown to increase the current rectification ratio from 10 5 to 10 7 at ±1 V, Schottky barrier height from 0.64 eV to 0.75 eV, and the ideality factor from 1.11 to 1.39. Half-wave rectifier circuits based on the fabricated Schottky diodes were simulated using parameters extracted from measured current-voltage and capacitance-voltage characteristics. The half-wave rectifier circuits were realized at 100 kHz and 300 kHz on as-fabricated Schottky diodes with active area of 200 μm × 200 μm, which is relevant for the near-field communication (125 kHz - 134 kHz), and provided the output voltage amplitude of 0.87 V for 2 V supply voltage. The simulation results matched with the measurement data, verifying the model accuracy for circuit level simulation.
Electrolyte-gated thin-film transistors (EGTs) with indium oxide channel, and expected lifetime of three months, enable low-voltage operation (~1 V) in the field of printed electronics (PEs). The channel width of our printed EGTs is varied between 200 and 1000 μm, whereas a channel length between 10 and 100 μm is used. Due to the lack of uniform performance p-type metal oxide semiconductors, n-type EGTs and passive elements are used to design circuits. For logic gates, transistor-resistor logic has been employed so far, but depletion and enhancement-mode EGTs in a transistor-transistor logic boost the circuit performance in terms of delay and signal swing. In this article, the threshold voltage of the EGT, which determines the operation mode, is tuned through sizing of the EGTs channel geometry. The feasibility of both transistor operation modes is demonstrated for logic gates and ring oscillators. An inverter operating at a supply voltage of 1 V shows a maximum gain of 9.6 and a propagation delay time of 0.7 ms, which represents an improvement of ~ 2x for the gain and oscillation frequency, in comparison with the resistor-transistor logic design. Moreover, the power consumption is reduced by 6x.
Fully Printed Inverters using Metal‐Oxide Semiconductor and Graphene Passives on Flexible Substrates
(2020)
Printed and flexible metal‐oxide transistor technology has recently demonstrated great promise due to its high performance and robust mechanical stability. Herein, fully printed inverter structures using electrolyte‐gated oxide transistors on a flexible polyimide (PI) substrate are discussed in detail. Conductive graphene ink is printed as the passive structures and interconnects. The additive printed transistors on PI substrates show an on/off ratio of 106 and show mobilities similar to the state‐of‐the‐art printed transistors on rigid substrates. Printed meander structures of graphene are used as pull‐up resistances in a transistor–resistor logic to create fully printed inverters. The printed and flexible inverters show a signal gain of 3.5 and a propagation delay of 30 ms. These printed inverters are able to withstand a tensile strain of 1.5% following more than 200 cycles of mechanical bending. The stability of the electrical direct current (DC) properties has been observed over a period of 5 weeks. These oxide transistor‐based fully printed inverters are relevant for digital printing methods which could be implemented into roll‐to‐roll processes.
In this report, we have studied field-effect transistors (FETs) using low-density alumina for electrolytic gating. Device layers have been prepared starting from the structured ITO glasses by printing the In 2 O 3 channels, low-temperature atomic layer deposition (ALD) of alumina (Al 2 O 3 ), and printing graphene top gates. The transistor performance could be deliberately changed by alternating the ambient humidity; furthermore, ID,ON/ID,OFF-ratios of up to seven orders of magnitude and threshold voltages between 0.66 and 0.43 V, decreasing with an increasing relative humidity between 40% and 90%, could be achieved. In contrast to the common usage of Al 2 O 3 as the dielectric in the FETs, our devices show electrolyte-typegating behavior. This is a result from the formation of protons on the Al 2 O 3 surfaces at higher humidities. Due to the very high local capacitances of the Helmholtz double layers at the channel surfaces, the operation voltage can be as low as 1 V. At low humidities (≤30%), the solid electrolyte dries out and the performance breaks down; however, it can fully reversibly be regained upon a humidity increase. Using ALD-derived alumina as solid electrolyte gating material, thus, allows low-voltage operation and provides a chemically stable gating material while maintaining low process temperatures. However, it has proven to be highly humidity-dependent in its performance.
In this study, a facile method to fabricate a cohesive ion‐gel based gate insulator for electrolyte‐gated transistors is introduced. The adhesive and flexible ion‐gel can be laminated easily on the semiconducting channel and electrode manually by hand. The ion‐gel is synthesized by a straightforward technique without complex procedures and shows a remarkable ionic conductivity of 4.8 mS cm−1 at room temperature. When used as a gate insulator in electrolyte‐gated transistors (EGTs), an on/off current ratio of 2.24×104 and a subthreshold swing of 117 mV dec−1 can be achieved. This performance is roughly equivalent to that of ink drop‐casted ion‐gels in electrolyte‐gated transistors, indicating that the film‐attachment method might represent a valuable alternative to ink drop‐casting for the fabrication of gate insulators.
Rectifiersare vital electronic circuits for signal and power conversion in various smart sensor applications. The ability to process low input voltage levels, for example, from vibrational energy harvesters is a major challenge with existing passive rectifiers in printed electronics, stemming mainly from the built-in potential of the diode's p-njunction. To address this problem, in this work, we design, fabricate, and characterize an inkjet-printed full-wave rectifier using diode-connected electrolyte-gated thin-film transistors (EGTs). Using both experimental and simulation approaches, we investigate how the rectifier can benefit from the near-zero threshold voltage of transistors, which can be enabled by proper channel geometry setting in EGT technology. The presented circuit can be operated at 1-V input voltage, featuring a remarkably small voltage loss of 140 mV and a cutoff frequency of ~300 Hz. Below the cutoff frequency, more than 2.6-μW dc power is obtained over the load resistances ranging from 5 to 20 kQ. Furthermore, experiments show that the circuit can work with an input amplitude down to 500 mV. This feature makes the presented design highly suitable for a variety of energy-harvesting applications.
Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors
(2020)
Modern society is striving for digital connectivity that demands information security. As an emerging technology, printed electronics is a key enabler for novel device types with free form factors, customizability, and the potential for large-area fabrication while being seamlessly integrated into our everyday environment. At present, information security is mainly based on software algorithms that use pseudo random numbers. In this regard, hardware-intrinsic security primitives, such as physical unclonable functions, are very promising to provide inherent security features comparable to biometrical data. Device-specific, random intrinsic variations are exploited to generate unique secure identifiers. Here, we introduce a hybrid physical unclonable function, combining silicon and printed electronics technologies, based on metal oxide thin film devices. Our system exploits the inherent randomness of printed materials due to surface roughness, film morphology and the resulting electrical characteristics. The security primitive provides high intrinsic variation, is non-volatile, scalable and exhibits nearly ideal uniqueness.
Diese Arbeit beschäftigt sich mit der Biomechanik der Halswirbelsäule (HWS) beim Umgang mit dem Smartphone. Die Kräfte, die auf Wirbelkörper, Wirbelgelenke, Bandscheiben, Muskeln und Bänder wirken, werden mit steigendem Flexionswinkel der HWS größer. Die Beschwerden hingegen, welche der Smartphone-Nacken hervorruft, sind meist akut und mit regelmäßiger Bewegung und der Stärkung der Nackenmuskulatur gut zu behandeln. Eine Therapie ist somit auch zur Vorbeugung geeignet. Doch die Langzeitauswirkungen sind nicht außer Acht zu lassen, denn durch die steigenden Nutzungsmöglichkeiten der Smartphones steigt auch der durchschnittliche tägliche Gebrauch stärker an. So wird vor allem die tägliche Bildschirmzeit bei Jugendlichen immer länger. Das aktuell noch akute Krankheitsbild des Smartphone-Nackens, das nur selten einen chronischen Verlauf nimmt und Langzeitschäden verursacht, könnte sich durch fehlende oder zu späte Maßnahmen zu einem größeren chronischen Krankheitsbild entwickeln.
Prediction of Claims in Export Credit Finance: A Comparison of Four Machine Learning Techniques
(2020)
This study evaluates four machine learning (ML) techniques (Decision Trees (DT), Random Forests (RF), Neural Networks (NN) and Probabilistic Neural Networks (PNN)) on their ability to accurately predict export credit insurance claims. Additionally, we compare the performance of the ML techniques against a simple benchmark (BM) heuristic. The analysis is based on the utilisation of a dataset provided by the Berne Union, which is the most comprehensive collection of export credit insurance data and has been used in only two scientific studies so far. All ML techniques performed relatively well in predicting whether or not claims would be incurred, and, with limitations, in predicting the order of magnitude of the claims. No satisfactory results were achieved predicting actual claim ratios. RF performed significantly better than DT, NN and PNN against all prediction tasks, and most reliably carried their validation performance forward to test performance.
A disturbed synchronization of the ventricular contraction can cause a highly developed systolic heart failure in affected patients with reduction of the left ventricular ejection fraction, which can often be explained by a diseased left bundle branch block (LBBB). If medication remains unresponsive, the concerned patients will be treated with a cardiac resynchronization therapy (CRT) system. The aim of this study was to integrate His-bundle pacing into the Offenburg heart rhythm model in order to visualize the electrical pacing field generated by His-Bundle-Pacing. Modelling and electrical field simulation activities were performed with the software CST (Computer Simulation Technology) from Dessault Systèms. CRT with biventricular pacing is to be achieved by an apical right ventricular electrode and an additional left ventricular electrode, which is floated into the coronary vein sinus. The non-responder rate of the CRT therapy is about one third of the CRT patients. His- Bundle-Pacing represents a physiological alternative to conventional cardiac pacing and cardiac resynchronization. An electrode implanted in the His-bundle emits a stronger electrical pacing field than the electrical pacing field of conventional cardiac pacemakers. The pacing of the Hisbundle was performed by the Medtronic Select Secure 3830 electrode with pacing voltage amplitudes of 3 V, 2 V and 1,5 V in combination with a pacing pulse duration of 1 ms. Compared to conventional pacemaker pacing, His-bundle pacing is capable of bridging LBBB conduction disorders in the left ventricle. The His-bundle pacing electrical field is able to spread via the physiological pathway in the right and left ventricles for CRT with a narrow QRS-complex in the surface ECG.
For the standard ISO 16842 cruciform test specimen, stresses obtained from the gauge area are far below the ultimate tensile strength due to high stress concentrations at the slit ends which lead to premature failure. Objective: To introduce a new cruciform specimen design which has been optimized with respect to the determination of yield surfaces. Methods: The proposed design differs from the ISO standard by an additional thinning of the gauge area and wider slits in the arms to avoid stress singularities. Compared to other cruciform test piece designs found in the literature, the stress distribution is still homogeneous and there is no need to reduce the size of the gauge area, thanks to the specimen’s well-balanced proportions. Results: Biaxial tensile tests have been conducted with aluminium 5754 alloy samples of different thicknesses. For the standard cruciform test piece, the maximum strain achieved at the gauge area is only 25% of the fracture strain. The optimized cruciform test piece can attain about 66% of the fracture strain before breaking. Conclusions: The optimized specimen design enables the measurement of yield surfaces at higher stress levels. In case of other materials such as elastomers, the slit length has be to adjusted accordingly.
Bei bimodaler Cochlea-Implantat-/Hörgerät-Versorgung kann es aufgrund seitenverschiedener Signalverarbeitung zu einer zeitlich versetzten Stimulation der beiden Modalitäten kommen. Jüngste Studien haben gezeigt, dass durch zeitlichen Abgleich der Modalitäten die Schalllokalisation bei bimodaler Versorgung verbessert werden kann. Um solch einen Abgleich vornehmen zu können, ist die messtechnische Bestimmung der Durchlaufzeit von Hörgeräten erforderlich. Kommerziell verfügbare Hörgerätemessboxen können diese Werte häufig liefern. Die dazu verwendete Signalverarbeitung wird dabei aber oft nicht vollständig offengelegt. In dieser Arbeit wird ein alternativer und nachvollziehbarer Ansatz zum Design eines simplen Messaufbaus basierend auf einem Arduino DUE Mikrocontroller-Board vorgestellt. Hierzu wurde ein Messtisch im 3D-Druck gefertigt, auf welchem Hörgeräte über einen 2-ccm-Kuppler an ein Messmikrofon angeschlossen werden können. Über einen Latenzvergleich mit dem simultan erfassten Signal eines Referenzmikrofons kann die Durchlaufzeit von Hörgeräten bestimmt werden. Frequenzspezifische Durchlaufzeiten werden mittels einer Kreuzkorrelation zwischen Ziel- und Referenzsignal errechnet. Aufnahme, Ausgabe und Speicherung der Signale erfolgt über einen ATMEL SAM3X8E Mikrocontroller, welcher auf dem Arduino DUE-Board verbaut ist. Über eigens entworfene elektronische Schaltungen werden die Mikrofone und der verwendete Lautsprecher angesteuert. Nach Abschluss einer Messung (Messdauer ca. 5 s) werden die Messdaten seriell an einen PC übertragen, auf dem die Datenauswertung mittels MATLAB erfolgt. Erste Validierungen zeigten eine hohe Stabilität der Messergebnisse mit sehr geringen Standardabweichungen im Bereich weniger Mikrosekunden für Pegel zwischen 50 und 75 dB (A). Der Messaufbau wird in laufenden Studien zur Quantifizierung der Durchlaufzeit von Hörgeräten verwendet.
Im Beitrag wird gezeigt, wie sich die Ackermann’sche Formel zur Polvorgabe bei zeitkontinuierlichen
Ein- und Mehrgrößenzustandsregelungen in einfacher
Weise auf nicht vollständig steuerbare Regelstrecken
erweitern lässt. Das vorgestellte Verfahren basiert
auf einer teilsystemorientierten Zustandstransformation
in Verbindung mit der Einführung zusätzlicher fiktiver Stellgrößen, über die nichtsteuerbare Streckeneigenwerte
formal beeinflusst werden könnten, aber durch Nullsetzen
dieser Stellgrößen nicht beeinflusst werden. Dem
Reglerentwurf vorausgehende Maßnahmen zur Elimination
von nicht steuerbaren Anteilen aus dem Streckenmodell
sind daher nicht erforderlich. Im Vergleich zum Fall
einer vollständig steuerbaren Regelstrecke erfordert die
Anwendung des vorgestellten Verfahrens kaum Mehraufwand,
was am Beispiel eines Eingrößen- und eines Mehrgrößensystems
illustriert wird.
In der vorliegenden Arbeit werden fotografische Aufnahmen zweier verschiedener
Abgüsse von Paganinis rechter Hand vorgestellt und näher beschrieben. Es handelt sich
um einen mutmaßlich originalen Bronzeabguss, der vermutlich kurz nach Paganinis Tod
auf dessen Totenbett abgenommen wurde, und eine in heutiger Zeit angefertigte Kopie aus Fiberplastik mit goldfarbenem Anstrich. Die Hand ist im proximalen Handgelenk
stark abgewinkelt, was dafür spricht, dass die Hand des Toten auf einem Kissen gelegen
haben könnte, um den Abguss vorzunehmen. Überdies zeigt sich eine verkrampfte Stellung
der Finger und Hand, am ehesten infolge Totenstarre. Man findet zudem arthrotische
Veränderungen sowie hervortretende Sehnen und atrophierte Muskulatur. Beim Bronzeabguss
sind die beschriebenen Auffälligkeiten deutlicher zu erkennen. Ein 3D-Scan des
Bronzeabgusses der rechten Hand Paganinis mit einem Strukturlichtscanner würde die
Möglichkeit erröffnen, Messdaten der Hand zu erhalten.
Optimisation based economic despatch of real-world complex energy systems demands reduced order and continuously differentiable component models that can represent their part-load behaviour and dynamic responses. A literature study of existing modelling methods and the necessary characteristics the models should meet for their successful application in model predictive control of a polygeneration system are presented. Deriving from that, a rational modelling procedure using engineering principles and assumptions to develop simplified component models is applied. The models are quantitatively and qualitatively evaluated against experimental data and their efficacy for application in a building automation and control architecture is established.
Cooling towers or recoolers are one of the major consumers of electricity in a HVAC plant. The implementation and analysis of advanced control methods in a practical application and its comparison with conventional controllers is necessary to establish a framework for their feasibility especially in the field of decentralised energy systems. A standard industrial controller, a PID and a model based controller were developed and tested in an experimental set-up using market-ready components. The characteristics of these controllers such as settling time, control difference, and frequency of control actions are compared based on the monitoring data. Modern controllers demonstrated clear advantages in terms of energy savings and higher accuracy and a model based controller was easier to set-up than a PID.
Passive hybridization refers to a parallel connection of photovoltaic and battery cells on the direct current level without any active controllers or inverters. We present the first study of a lithium-ion battery cell connected in parallel to a string of four or five serially-connected photovoltaic cells. Experimental investigations were performed using a modified commercial photovoltaic module and a lithium titanate battery pouch cell, representing an overall 41.7 W-peak (photovoltaic)/36.8 W-hour (battery) passive hybrid system. Systematic and detailed monitoring of this system over periods of several days with different load scenarios was carried out. A scaled dynamic synthetic load representing a typical profile of a single-family house was successfully supplied with 100 % self-sufficiency over a period of two days. The system shows dynamic, fully passive self-regulation without maximum power point tracking and without battery management system. The feasibility of a photovoltaic/lithium-ion battery passive hybrid system could therefore be demonstrated.
Knight Götz von Berlichingen (1480–1562) lost his right hand distal to the wrist due to a cannon ball splinter injury in 1504 in the Landshut War of Succession at the age of 24. Early on, Götz commissioned a gunsmith to build the first “Iron Hand,” in which the artificial thumb and two finger blocks could be moved in their basic joints by a spring mechanism and released by a push button. Some years later, probably around 1530, a second “Iron Hand” was built, in which the fingers could be moved passively in all joints. In this review, the 3D computer-aided design (CAD) reconstructions and 3D multi-material polymer replica printings of the first “Iron hand“, which were developed in the last few years at Offenburg University, are presented. Even by today’s standards, the first “Iron Hand”—as could be shown in the replicas—demonstrates sophisticated mechanics and well thought-out functionality and still offers inspiration and food for discussion when it comes to the question of an artificial prosthetic replacement for a hand. It is also outlined how some of the ideas of this mechanical passive prosthesis can be translated into a modern motorized active prosthetic hand by using simple, commercially available electronic components.
In the field of neuroprosthetics, the current state-of-the-art method involves controlling the prosthesis with electromyography (EMG) or electrooculography/electroencephalography (EOG/EEG). However, these systems are both expensive and time consuming to calibrate, susceptible to interference, and require a lengthy learning phase by the patient. Therefore, it is an open challenge to design more robust systems that are suitable for everyday use and meet the needs of patients. In this paper, we present a new concept of complete visual control for a prosthesis, an exoskeleton or another end effector using augmented reality (AR) glasses presented for the first time in a proof-of-concept study. By using AR glasses equipped with a monocular camera, a marker attached to the prosthesis is tracked. Minimal relative movements of the head with respect to the prosthesis are registered by tracking and used for control. Two possible control mechanisms including visual feedback are presented and implemented for both a motorized hand orthosis and a motorized hand prosthesis. Since the grasping process is mainly controlled by vision, the proposed approach appears to be natural and intuitive.
In this editorial, a topic for general discussion in the field of neuroprosthetics of the upper limb is addressed: which way—invasive or non-invasive—is the right one for the future in the development of neuroprosthetic concepts. At present, two groups of research priorities (namely the invasive versus the non-invasive approach) seem to be emerging, without taking a closer look at the wishes but also the concerns of the patients. This piece is intended to stimulate the discussion on this.