Refine
Year of publication
Document Type
- Article (reviewed) (207)
- Conference Proceeding (156)
- Article (unreviewed) (76)
- Bachelor Thesis (67)
- Contribution to a Periodical (53)
- Part of a Book (51)
- Book (25)
- Patent (24)
- Report (22)
- Master's Thesis (14)
Keywords
- Dünnschichtchromatographie (26)
- Energieversorgung (12)
- Adsorption (11)
- Ermüdung (9)
- Finite-Elemente-Methode (9)
- Metallorganisches Netzwerk (9)
- Plastizität (9)
- Simulation (8)
- Bauteil (7)
- Haustechnik (7)
Institute
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (710) (remove)
Open Access
- Closed Access (264)
- Open Access (188)
- Bronze (13)
- Closed (1)
- Diamond (1)
- Gold (1)
In the course of the last few years, our students are becoming increasingly unhappy. Sometimes they stop attending lectures and even seem not to know how to behave correctly. It feels like they are getting on strike. Consequently, drop-out rates are sky-rocketing. The lecturers/professors are not happy either, adopting an “I-don’t-care” attitude.
An interdisciplinary, international team set in to find out: (1) What are the students unhappy about? Why is it becoming so difficult for them to cope? (2) What does the “I-don’t-care” attitude of professors actually mean? What do they care or not care about? (3) How far do the views of the parties correlate? Could some kind of mutual understanding be achieved?
The findings indicate that, at least at our universities, there is rather a long way to go from “Engineering versus Pedagogy” to “Engineering Pedagogy”.
Technologie spielt im Sport schon immer eine große Rolle. Mit steigender Leistungsdichte im Spitzensport wird versucht mithilfe technischer Hilfsmittel dem Sportler die optimalen Umstände zu ermöglichen. Dazu gehört nicht nur Technik im Sportequiptment, sondern auch Sportuntersuchungen wie Leistungsdiagnostiken. Im Laufsport zählen dazu Ausdauer- und Krafttests. Bei Ausdauertests werden physiologische Parameter wie Laktat, Herzfrequenz oder Sauerstoffaufnahme gemessen. Zusätzlich wird die Lauftechnik für einen kurzen Zeitpunkt analysiert. Wie sich diese unter anhaltender Belastung verhält, wird nicht untersucht. Mit neuen Technologien im Bereich Bewegungsanalyse, können immer schneller größere Datensätze ausgewertet werden. Aus diesem Grund wird in dieser Studie die Lauftechnik über mehrere Zeitpunkte aufgezeichnet und nach Ermüdungserscheinungen untersucht.
Dazu wurde am Institut für angewandte Trainingswissenschaften (IAT) während einer komplexen Leistungsdiagnostik im März 2021 bei einem Laufbandstufentest (4x2000m oder 4x3000m) die Lauftechnik von 15 Elite- und Elitenachwuchsläufer:innen (m=8, w=7) mithilfe eines 3D-Bewegungsanalyse Systems nach Veränderungen in Winkelstellung und Bodenreaktionskraft untersucht. Als physiologische Vergleichsparameter wurde Herzfrequenz und Laktat aufgenommen.
Bei der Analyse der Daten wurden diese in der Gruppe betrachtet. Dabei haben sich schwach signifikante Veränderungen (p=0,047) der vertikalen Bodenreaktionskraft links am Ende der Stufe aufgezeigt. Weitere signifikante Unterschiede (p=0,020) sind im maximalen Kniehub links zu einem größerer Hüftwinkel am Ende sichtbar. Da sonst keine signifikanten Unterschiede zu sehen sind, lässt sich, bei dem hier durchgeführten Protokoll, nicht statistisch gesichert feststellen, ob auftretende Ermüdungserscheinungen die Lauftechnik beeinflussen und verändern. Um festzustellen, ob es geschlechts- oder protokollanhängige Effekte hinsichtlich einer ermüdungsbedingte Lauftechnikveränderung gibt, wurde auch dies statistisch untersucht.
Hier zeigten sich jeweils in einzelnen Parametern signifikante Unterschiede (Parameter TO\_knee\_left; p=0,026) in der Geschlechtsspezifik und in der protokollabhängigen Untersuchung (Parameter TSw\_hip\_left; p=0,04)
Für weitere Studien zur Untersuchung von Lauftechnikveränderung sollten umfangreichere physiologische Daten zur genaueren Betrachtung der Ermüdung verwendet werden. Grundsätzlich müsste das Protokoll auf eine maximale Ausbelastung (beispielsweise Dauerstufentest von 10-15km oder Ausbelastungs-/Abbruchtest) ausgelegt sein.
Grundlegend ist festzustellen, dass sich Simi-Shape als 3D-Bewegungsanalyse-Methode eignet, um spezifische Parameter in der Lauftechnik zu diagnostizieren, gerade hinsichtlich der Effizienz im Auswerteprozess.
With the increasing share of renewable energies and the nuclear phase-out, the energy transition is accelerating. From the perspective of building technology, there is great potential to support this transition given its large share in total energy consumption and the increasing number of flexible and controllable components and storages. However, a question often asked at the plant level is: "How do we use this flexibility to support the regional grid?". In this work, a grid-supportive controller of a real-world building energy plant was developed using mathematical optimisation methods and its technical feasibility was demonstrated. The results could convince actors from the energy industry and academia about the practicality of these methods and offer tools for their implementation.
A crack opening stress equation for in-phase and out-of-phase thermomechanical fatigue loading
(2016)
In this paper, a crack opening stress equation for in-phase and out-of-phase thermomechanical fatigue (TMF) loading is proposed. The equation is derived from systematic calculations of the crack opening stress with a temperature dependent strip yield model for both plane stress and plane strain, different load ratios and different ratios of the temperature dependent yield stress in compression and tension. Using a load ratio scaled by the ratio of the yield stress in compression and tension, the equation accounts for the effect of the temperature dependent yield stress and the constraint on the crack opening stress. Based on the scaling relation established in this paper, Newman's crack opening stress equation for isothermal loading is enabled to predict the crack opening stress under TMF loading.
The aim of this study was to develop a biomechanically validated finite element model to predict the biomechanical behaviour of the human lumbar spine in compression.
For validation of the finite element model, an in vitro study was performed: Twelve human lumbar cadaveric spinal segments (six segments L2/3 and six segments L4/5) were loaded in axial compression using 600 N in the intact state and following surgical treatment using two different internal stabilisation devices. Range of motion was measured and used to calculate stiffness.
A finite element model of a human spinal segment L3/4 was loaded with the same force in intact and surgically altered state, corresponding to the situation of biomechanical in vitro study.
The results of the cadaver biomechanical and finite element analysis were compared. As they were close together, the finite element model was used to predict: (1) load-sharing within human lumbar spine in compression, (2) load-sharing within osteoporotic human lumbar spine in compression and (3) the stabilising potential of the different spinal implants with respect to bone mineral density.
A finite element model as described here may be used to predict the biomechanical behaviour of the spine. Moreover, the influence of different spinal stabilisation systems may be predicted.
In this paper, the multiaxial formulation of a mechanism-based model for fatigue life prediction is presented whichcan be applied to low-cycle fatigue (LCF) and thermomechanical fatigue (TMF) problems in which high-cycle fa-tigue loadings are superimposed. The model assumes that crack growth is the lifetime limiting mechanism and thatthe crack advance in a loading cycleda/dNcorrelates with the cyclic crack-tip opening displacement ΔCTOD.The multiaxial formulation makes use of fracture mechanics solutions and thus, does not need additional modelparameters quantifying the effect of the multiaxiality. Furthermore, the model includes contributions of HCF on ΔCTODand assesses the effect of the direction of the HCF loadings with respect to LCF or TMF loadings inthe life prediction. The model is implemented into the finite-element program ABAQUS. It is applied to predictthe fatigue life of a thermomechanically loaded notched specimen that should represent the situation between theinlet and outlet bore holes of cylinder heads. A good correlation of the predicted and the measured fatigue lives isobtained.
High temperature components in internal combustion engines and exhaust systems must withstand severe mechanical and thermal cyclic loads throughout their lifetime. The combination of thermal transients and mechanical load cycling results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material. Analytical tools are increasingly employed by designers and engineers for component durability assessment well before any hardware testing. The DTMF model for TMF life prediction, which assumes that micro-crack growth is the dominant damage mechanism, is capable of providing reliable predictions for a wide range of high-temperature components and materials in internal combustion engines. Thus far, the DTMF model has employed a local approach where surface stresses, strains, and temperatures are used to compute damage for estimating the number of cycles for a small initial defect or micro-crack to reach a critical length. In the presence of significant gradients of stresses, strains, and temperatures, the use of surface field values could lead to very conservative estimates of TMF life when compared with reported lives from hardware testing. As an approximation of gradient effects, a non-local approach of the DTMF model is applied. This approach considers through-thickness fields where the micro-crack growth law is integrated through the thickness considering these variable fields. With the help of software tools, this method is automated and applied to components with complex geometries and fields. It is shown, for the TMF life prediction of a turbocharger housing, that the gradient correction using the non-local approach leads to more realistic life predictions and can distinguish between surface cracks that may arrest or propagate through the thickness and lead to component failure.
Quantifying the midsole material characteristics of athletic footwear is a standard task in footwear research and development. Current material testing protocols primarily focus on the determination of cushioning properties of the heel region or the quantification of the midsole properties as one assembly. However, midsoles possess different spatial material properties that have not been quantified from previous methodologies. Therefore, new material testing methods are required to quantify the local material response of athletic footwear. We developed a cyclical force-controlled material testing protocol for the determination of non-homogeneously distributed material stiffness with a high spatial resolution. In five prototype shoes varying in their stiffness distribution, we found that the material properties can be reliably measured across the midsole. Furthermore, we observed a characteristic non-linear material response regardless of the midsole location. We found that the material stiffness increased with an increase of the applied force and that this effect is further intensified by higher testing cycles. Additionally, the obtained midsole stiffness depends on the geometry of the midsole. We explored different approaches to reduce the measurement time of the testing protocol and found that the number of measurements can be reduced by 70% using 2 D-interpolation procedures. Determining the spatial material properties of midsoles needs to be considered to understand foot-shoe interactions. Furthermore, this measurement protocol can be used for quality control within the footwear and can be adapted for considering the effects of different running styles or speeds on ground force application characteristics.
Uptakes of 9.2 mmol g−1 (40.5 wt %) for CO2 at 273 K/0.1 MPa and 15.23 mmol g−1 (3.07 wt %) for H2 at 77 K/0.1 MPa are among the highest reported for metal–organic frameworks (MOFs) and are found for a novel, highly microporous copper‐based MOF (see picture; Cu turquoise, O red, N blue). Thermal analyses show a stability of the flexible framework up to 250 °C.
Metal–organic frameworks (MOFs) as highly porous materials have gained increasing interest because of their distinct adsorption properties.1–3 They exhibit a high potential for applications in gas separation and storage,4 as sensors5 as well as in heterogeneous catalysis.6 In the last few years, the H2 storage capacity of MOFs has been considerably increased. Mesoporous MOFs show high adsorption capacities for CH4, CO2, and H2 at high pressures.2, 3, 7–10 To increase the uptake of H2 and CO2 by physisorption at ambient pressure, adsorbents with small micropores as well as high specific surface areas and micropore volumes are required.11, 12 Such microporous materials seem to be more appropriate for gas‐mixture separation by physisorption than mesoporous materials. For gas separation in MOFs the interactions between the fluid adsorptive and “open metal sites” (coordinatively unsaturated binding sites) or the ligands are regarded as important.13 Industrial processes, such as natural‐gas purification or biogas upgrading, can be improved with those materials during a vapor‐pressure swing adsorption cycle (VPSA cycle) or a temperature swing adsorption cycle (TSA cycle).14 The microporous MOF series CPO‐27‐M (M=Mg, Co, Ni, Zn), for example, shows very high CO2 uptakes at low pressures (<0.1 MPa).15, 16 Concerning H2 adsorption, the microporous MOF PCN‐12 offers with 3.05 wt % the highest uptake at ambient pressure and 77 K reported to date.17
Herein, we present a novel microporous copper‐based MOF equation image[Cu(Me‐4py‐trz‐ia)] (1; Me‐4py‐trz‐ia2−=5‐(3‐methyl‐5‐(pyridin‐4‐yl)‐4H‐1,2,4‐triazol‐4‐yl)isophthalate) with extraordinarily high CO2 and H2 uptakes at ambient pressure, the H2 uptake being similar to that in PCN‐12. The ligand Me‐4py‐trz‐ia2−, which can be obtained from cheap starting materials by a three‐step synthesis in good yield, combines carboxylate, triazole, and pyridine functions and is adopted from a recently presented series of linkers,18 for which up to now only a few coordination polymers are known.
Pure orbital blowout fractures occur within the confines of the internal orbital wall. Restoration of orbital form and volume is paramount to prevent functional and esthetic impairment. The anatomical peculiarity of the orbit has encouraged surgeons to develop implants with customized features to restore its architecture. This has resulted in worldwide clinical demand for patient-specific implants (PSIs) designed to fit precisely in the patient’s unique anatomy. Material extrusion or Fused filament fabrication (FFF) three-dimensional (3D) printing technology has enabled the fabrication of implant-grade polymers such as Polyetheretherketone (PEEK), paving the way for a more sophisticated generation of biomaterials. This study evaluates the FFF 3D printed PEEK orbital mesh customized implants with a metric considering the relevant design, biomechanical, and morphological parameters. The performance of the implants is studied as a function of varying thicknesses and porous design constructs through a finite element (FE) based computational model and a decision matrix based statistical approach. The maximum stress values achieved in our results predict the high durability of the implants, and the maximum deformation values were under one-tenth of a millimeter (mm) domain in all the implant profile configurations. The circular patterned implant (0.9 mm) had the best performance score. The study demonstrates that compounding multi-design computational analysis with 3D printing can be beneficial for the optimal restoration of the orbital floor.
The NaSiO Institute (Institute for Sustainable Silicate Research in Offenburg, https://inasio.hs-offenburg.de/) has been working for years on climate-friendly alternatives to insulation materials and inorganic binders, as well as the reasonable use of construction waste in the building industry. The aim of research is to realize the enormous CO 2 saving potential of the construction sector worldwide. A stopping of climate heating will only succeed if these climate-friendly alternatives are used in the construction industry. This is the only way to realize the enormous CO2 savings that will be needed in future to comply with the Paris Agreement.
Treadmills are essential to the study of human and animal locomotion as well as for applied diagnostics in both sports and medicine. The quantification of relevant biomechanical and physiological variables requires a precise regulation of treadmill belt velocity (TBV). Here, we present a novel method for time-efficient tracking of TBV using standard 3D motion capture technology. Further, we analyzed TBV fluctuations of four different treadmills as seven participants walked and ran at target speeds ranging from 1.0 to 4.5 m/s. Using the novel method, we show that TBV regulation differs between treadmill types, and that certain features of TBV regulation are affected by the subjects’ body mass and their locomotion speed. With higher body mass, the TBV reductions in the braking phase of stance became higher, even though this relationship differed between locomotion speeds and treadmill type (significant body mass × speed × treadmill type interaction). Average belt speeds varied between about 98 and 103% of the target speed. For three of the four treadmills, TBV reduction during the stance phase of running was more intense (> 5% target speed) and occurred earlier (before 50% of stance phase) unlike the typical overground center of mass velocity patterns reported in the literature. Overall, the results of this study emphasize the importance of monitoring TBV during locomotor research and applied diagnostics. We provide a novel method that is freely accessible on Matlab’s file exchange server (“getBeltVelocity.m”) allowing TBV tracking to become standard practice in locomotion research.
Melamine (1,3,5-triazine-2,4,6-triamine or cyanuramide, C3H6N6) is a trimer of cyanamide, with a 1,3,5-triazine skeleton (Figure 3.5-1). The molecule contains 66% nitrogen by mass and, if mixed with resins, has fire retardant properties due to its release of nitrogen gas when burned or charred. The word melamine (from German) is a combination of the word melam (which is a distillation derivative of ammonium thiocyanate) and amine [1]. Melamine is also a metabolite of cyromazine, an insecticide in which the proton of an NH2-group is substituted by a cyclopropyl group.
One of the challenges in humanoid robotics is motion control. Interacting with humans requires impedance control algorithms, as well as tackling the problem of the closed kinematic chains which occur when both feet touch the ground. However, pure impedance control for totally autonomous robots is difficult to realize, as this algorithm needs very precise sensors for force and speed of the actuated parts, as well as very high sampling rates for the controller input signals. Both requirements lead to a complex and heavy weight design, which makes up for heavy machines unusable in RoboCup Soccer competitions.
A lightweight motor controller was developed that can be used for admittance and impedance control as well as for model predictive control algorithms to further improve the gait of the robot.
An algorithm is presented that has successfully been utilized in practice for several years. It improves data analysis in chromatography. The program runs in an extremely reliable way and evaluates chromatographic raw data with an acceptable error. The algorithm requires a minimum of preliminaries and integrates even unsmoothed noisy data correctly.
We report improved separation of the highly toxic contact herbicides paraquat, diquat, difenzoquat, mepiquat, and chloromequat by HPTLC. Quantification was based on a new derivatization reaction using sodium tetraphenylborate. Measurements were in the wavelength range from 440 to 480 nm or from 440 to 590 nm. An LED emitting very intense light at 365 nm was used for excitation. The quantification limits of paraquat and diquat in water, using improved solid-phase extraction, was in the low ng L −1 range. The linear range covered more than two orders of magnitude. Recovery was investigated for all the compounds, and was insufficient, ranging from 11 to 92%, but the method is inexpensive, rapid, and works reliably.
Synthesis and crystal structure of a novel copper-based MOF material are presented. The tetragonal crystal structure of [ ∞ 3 ( Cu 4 ( μ 4 -O ) ( μ 2 -OH ) 2 ( Me 2 trz p ba ) 4 ] possesses a calculated solvent-accessible pore volume of 57%. Besides the preparation of single crystals, synthesis routes to microcrystalline materials are reported. While PXRD measurements ensure the phase purity of the as-synthesized material, TD-PXRD measurements and coupled DTA–TG–MS analysis confirm the stability of the network up to 230 °C. The pore volume of the microcrystalline material determined by nitrogen adsorption at 77 K depends on the synthetic conditions applied. After synthesis in DMF/H2O/MeOH the pores are blocked for nitrogen, whereas they are accessible for nitrogen after synthesis in H2O/EtOH and subsequent MeOH Soxhleth extraction. The corresponding experimental pore volume was determined by nitrogen adsorption to be V Pore = 0.58 cm 3 g - 1 . In order to characterize the new material and to show its adsorption potential, comprehensive adsorption studies with different adsorptives such as nitrogen, argon, carbon dioxide, methanol and methane at different temperatures were carried out. Unusual adsorption–desorption isotherms with one or two hysteresis loops are found – a remarkable feature of the new flexible MOF material.
The newly synthesized Zn4O-based MOF 3∞[Zn4(μ4-O){(Metrz-pba)2mPh}3]·8 DMF (1·8 DMF) of rare tungsten carbide (acs) topology exhibits a porosity of 43% and remarkably high thermal stability up to 430 °C. Single crystal X-ray structure analyses could be performed using as-synthesized as well as desolvated crystals. Besides the solvothermal synthesis of single crystals a scalable synthesis of microcrystalline material of the MOF is reported. Combined TG-MS and solid state NMR measurements reveal the presence of mobile DMF molecules in the pore system of the framework. Adsorption measurements confirm that the pore structure is fully accessible for nitrogen molecules at 77 K. The adsorptive pore volume of 0.41 cm3 g−1 correlates well with the pore volume of 0.43 cm3 g−1 estimated from the single crystal structure.
Governments have restricted public life during the COVID-19 pandemic, inter alia closing sports facilities and gyms. As regular exercise is essential for health, this study examined the effect of pandemic-related confinements on physical activity (PA) levels. A multinational survey was performed in 14 countries. Times spent in moderate-to-vigorous physical activity (MVPA) as well as in vigorous physical activity only (VPA) were assessed using the Nordic Physical Activity Questionnaire (short form). Data were obtained for leisure and occupational PA pre- and during restrictions. Compliance with PA guidelines was calculated based on the recommendations of the World Health Organization (WHO). In total, n = 13,503 respondents (39 ± 15 years, 59% females) were surveyed. Compared to pre-restrictions, overall self-reported PA declined by 41% (MVPA) and 42.2% (VPA). Reductions were higher for occupational vs. leisure time, young and old vs. middle-aged persons, previously more active vs. less active individuals, but similar between men and women. Compared to pre-pandemic, compliance with WHO guidelines decreased from 80.9% (95% CI: 80.3–81.7) to 62.5% (95% CI: 61.6–63.3). Results suggest PA levels have substantially decreased globally during the COVID-19 pandemic. Key stakeholders should consider strategies to mitigate loss in PA in order to preserve health during the pandemic.
The formation and analysis of ten microporous triazolyl isophthalate based MOFs, including nine isomorphous and one isostructural compound is presented. The compounds 1 M – 3 M with the general formula [ M ( R 1 - R 2 - trz - ia ) ] ∞ 3 ·x H 2 O (M 2+ = Co 2+ , Cu 2+ , Zn 2+ , Cd 2+ ; R 1 = H, Me; R 2 = 2py, 2pym, prz (2py = 2-pyridinyle; 2pym = 2-pyrimidinyle; prz = pyrazinyle)) crystallize with rtl topology. They are available as single crystals and also easily accessible in a multi-gram scale via refluxing the metal salts and the protonated ligands in a solvent. Their isomorphous structures facilitate the synthesis of heteronuclear MOFs; in case of 2 M , Co 2+ ions could be gradually substituted by Cu 2+ ions. The Co 2+ :Cu 2+ ratios were determined by ICP-OES spectroscopy, the distribution of Co 2+ and Cu 2+ in the crystalline samples are investigated by SEM-EDX analysis leading to the conclusions that Cu 2+ is more favorably incorporated into the framework compared to Co 2+ and, moreover, that the distribution of the two metal ions between the crystals and within the crystals is inhomogeneous if the crystals were grown slowly. The various compositions of the heteronuclear materials lead to different colors and the sorption properties for CO 2 and N 2 are dependent on the integrated metal ions.
A Simple and Reliable HPTLC Method for the Quantification of the Intense Sweetener Sucralose®
(2003)
This paper describes a simple and fast thin layer chromatography (TLC) method for the monitoring of the relatively new intense sweetener Sucralose® in various food matrices. The method requires little or no sample preparation to isolate or concentrate the analyte. The Sucralose® extract is separated on amino‐TLC‐plates, and the analyte is derivatized “reagent‐free” by heating the developed plate for 20 min at 190°C. Spots can be measured either in the absorption or fluorescence mode. The method allows the determination of Sucralose® at the levels of interest regarding foreseen European legislation (>50 mg/kg) with excellent repeatability (RSD = 3.4%) and recovery data (95%).
HPTLC on amino plates, with simple heating of the plates for derivatization, has been used for quantification of glucosamine in nutritional supplements. On heating the plate glucosamine reacts to form a compound which strongly absorbs light between 305 and 330 nm, with weak fluorescence. The reaction product can be detected sensitively either by absorption of light or by fluorescence detection. The detection limit in absorption mode is approximately 25 ng per spot. In fluorescence mode a detection limit of 15 ng is achievable. A calibration plot for absorption detection is linear in the range 25 to 4000 ng glucosamine. The derivative formed from glucosamine by heating is stable for months, and the relative standard deviation is 1.64% for 600 ng glucosamine. The amounts of glucosamine found in nutritional supplements were in agreement with the label declarations.
A simple Method for quantifying Triazine Herbicides using Thin-Layer Chromatography and a CCD-Camera
(2010)
We present a video-densitometric quantification method for the triazine herbicides atraton, terbumeton, simazine, atrazine, and terbutylazine. Triazine herbicides were separated on silica gel using methyl-t-butyl ether, cyclohexane (1 + 1, v/v) as mobile phase. The quantification is based on a derivation reaction using chlorine and starch-iodine which forms red-brown triazine zones. Measurements were carried out using a 16 bit ST-1603ME CCD camera with 1.56 megapixel from Santa Barbara Instrument Group, Inc., Santa Barbara, USA. A white LED was used for illumination purposes. The range of linearity covers two magnitudes using the (1/R-1) expression data transformation. The signal-to-noise ratio increases directly linearly with the measurement time. The separation method is cheap, fast and reliable.
We present an improved quantification method for urethane found in spirits. The quantification is based on a derivatization reaction using cinnamaldehyde in combination with phosphoric acid. Measurements were carried out in the wavelength range from 445 to 460 nm using a diode-TLC device. An LED was used for illumination purposes. It emits very dense light at 365 nm. The quantification range of urethane is in the lower ng range. By applying 20 µL of sprits, the urethane quantification range is from 320 µg/L to 8.1 mg urethane per litre of spirit. The range of linearity covers nearly two magnitudes. The method is cheap, fast and reliable, and is able to monitor all European legislation limits without time-consuming sample pre-treatments.
Hot work tools are subjected to complex thermal and mechanical loads during hot forming processes. Locally, the stresses can exceed the material’s yield strength in highly loaded areas as e.g. in small radii in die cavities. To sustain the high loads, the hot forming tools are typically made of martensitic hot work steels. While temperatures for annealing of the tool steels usually lie in the range between 400 and 600 °C, the steels may experience even higher temperatures during hot forming, resulting in softening of the material due to coarsening of strengthening particles. In this paper, a temperature dependent cyclic plasticity model for the martensitic hot work tool steel 1.2367 (X38CrMoV5-3) is presented that includes softening due to particle coarsening and that can be applied in finite-element calculations to assess the effect of softening on the thermomechanical fatigue life of hot work tools. To this end, a kinetic model for the evolution of the mean size of secondary carbides based on Ostwald ripening is coupled with a cyclic plasticity model with kinematic hardening. Mechanism-based relations are developed to describe the dependency of the mechanical properties on carbide size and temperature. The material properties of the mechanical and kinetic model are determined on the basis of tempering hardness curves as well as monotonic and cyclic tests.
A Validated Quantification of Sudan Red Dyes in Spicery using TLC and a 16-bit Flatbed Scanner
(2018)
We present a video-densitometric quantification method for Sudan red dyes in spices and spice mixtures, separated by TLC. Application was done band-wise in small dots using a 5 μL glass pipette. For separation, the RP-18 plates (20 × 20 cm with fluorescent dye; Merck, Germany, 1.05559) were developed in a vertical developing chamber without vapor saturation from the starting point to a distance of 70 mm by using acetonitrile, methanol, and aqueous ammonia solution (25%; 8 + 1.8 + 0.2, v/v) as mobile phase. The quantification is based on direct measurements using an inexpensive 16-bit flatbed scanner for color measurements (in red, green, and blue). Evaluation of only the green channel makes the measurements very specific. For linearization, an extended Kubelka-Munk expression for data transformation was used. The range of linearity covers more than two magnitudes and lies between 20 and 500 ng. The extraction from a 2 g sample with acetonitrile, evaporation, and reconstitution to 200 μL with methanol and the band-wise application (7 mm) of a 10 μL sample allows a statistically defined LOD of less than 500 ppb of Sudan red dyes. To perform the analysis, a separation chamber, RP-18 plates, 5 μL glass pipettes, and a 16-bit flatbed scanner for 105 € are needed; therefore, the separation method is inexpensive, fast, and reliable.
We present a densitometric quantification method for triclosan in toothpaste, separated by high-performance thin-layer chromatography (HPTLC) and using a 48-bit flatbed scanner as the detection system. The sample was band-wise applied to HPTLC plates (10 × 20 cm), with fluorescent dye, Merck, Germany (1.05554). The plates were developed in a vertical developing chamber with 20 min of chamber saturation over 70 mm, using n-heptane–methyl tert-butyl ether–acetic acid (92:8:0.1, V/V) as solvent. The RF value of triclosan is hRF = 22.4, and quantification is based on direct measurements using an inexpensive 48-bit flatbed scanner for color measurements (in red, green, and blue) after plate staining with 2,6-dichloroquinone-4-chloroimide (Gibbs' reagent). Evaluation of the red channel makes the measurements of triclosan very specific. For linearization, an extended Kubelka–Munk expression was used for data transformation. The range of linearity covers more than two orders of magnitude and is between 91 and 1000 ng. The separation method is inexpensive, fast and reliable.
Thin-layer chromatography is a rapid and reliable working method for quantification of mycotoxins which is suitable for checking EC legislation aflatoxin limits for dried figs without an RP-18 pre-column cleaning step. We describe normal-phase chromatography on silica gel plates with 2.4:0.05:0.1:0.05 ( v/v ) methyl t -butyl ether-water-methanol-cyclohexane as mobile phase and reversed-phase chromatography on RP-18 plates with methanol-4% aqueous ZnSO 4 solution-ethyl methyl ketone 15:15:3 ( v/v ) as mobile phase. Sample pretreatment was by modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) extraction with tetrahydrofuran or acetone. NaCl was used as QuEChERS salt. Response was a linear function of amount chromatographed in the ranges 3 to 100 pg per zone for aflatoxins B 2 and G 2 , 10 to 350 pg per zone for the aflatoxins B 1 and G 1 , and 0.25 to 2.5 ng per zone for ochratoxin A. Quantification limits for the aflatoxins were between 13 and 35 pg per zone (equivalent to 1.5 and 2.4 ppb, taking the pre-treatment procedure into account). Ochratoxin A was detectable with a limit of quantification of 970 pg per zone, corresponding to 56 ppb in the sample. Normal phase and RP-18 separations work rapidly, reliably, and at low cost. They are also suitable for checking the content of the mycotoxins patulin, penicillic acid, zearalenone, and deoxynivalenol.
In dieser Arbeit werden die außentemperaturgeführte Vorlauftemperaturregelung (Standard-TABS-Strategie), ein Verfahren das auf einer multiplen linearen Regression basiert (AMLR-Strategie) und ein Verfahren, das unter dem Obergriff der modellprädiktiven Regelung (MPC-Strategie) zusammengefasst werden kann, untersucht. Anhand der Simulationsergebnisse und des Integrationsaufwandes in die Gebäudeautomation des Seminargebäudes wurde eine Fokussierung auf die AMLR-Strategie vorgenommen.
In pandemic times, the possibilities for conventional sports activities are severely limited; many sports facilities are closed or can only be used with restrictions. To counteract this lack of health activities and social exchange, people are increasingly adopting new digital sports solutions—a behavior change that had already started with the trend towards fitness apps and activity trackers. Existing research suggests that digital solutions increase the motivation to move and stay active. This work further investigates the potentials of digital sports incorporating the dimensions gender and preference for team sports versus individual sports. The study focuses on potential users, who were mostly younger professionals and academics. The results show that the SARS-CoV-19 pandemic had a significant negative impact on sports activity, particularly on persons preferring team sports. To compensate, most participants use more digital sports than before, and there is a positive correlation between the time spent physically active during the pandemic and the increase in motivation through digital sports. Nevertheless, there is still considerable skepticism regarding the potential of digital sports solutions to increase the motivation to do sports, increase performance, or raise a sense of team spirit when done in groups.
There is a growing trend for the use of thermo-active building systems (TABS) for the heating and cooling of buildings, because these systems are known to be very economical and efficient. However, their control is complicated due to the large thermal inertia, and their parameterization is time-consuming. With conventional TABS-control strategies, the required thermal comfort in buildings can often not be maintained, particularly if the internal heat sources are suddenly changed. This paper shows measurement results and evaluations of the operation of a novel adaptive and predictive calculation method, based on a multiple linear regression (AMLR) for the control of TABS. The measurement results are compared with the standard TABS strategy. The results show that the electrical pump energy could be reduced by more than 86%. Including the weather adjustment, it could be demonstrated that thermal energy savings of over 41% could be reached. In addition, the thermal comfort could be improved due to the possibility to specify mean room set-point temperatures. With the AMLR, comfort category I of the comfort norms ISO 7730 and DIN EN 15251 are observed in about 95% of occasions. With the standard TABS strategy, only about 24% are within category I.
Adaptive predictive control of thermo-active building systems (TABS) based on a multiple regression algorithm: First practical test. Available from: https://www.researchgate.net/publication/305903009_Adaptive_predictive_control_of_thermo-active_building_systems_TABS_based_on_a_multiple_regression_algorithm_First_practical_test [accessed Jul 7, 2017].
Additive manufacturing is a rapidly growing manufacturing process for which many new processes and materials are currently being developed. The biggest advantage is that almost any shape can be produced, while conventional manufacturing methods reach their limits. Furthermore, a lot of material is saved because the part is created in layers and only as much material is used as necessary. In contrast, in the case of machining processes, it is not uncommon for more than half of the material to be removed and disposed of. Recently, new additive manufacturing processes have been on the market that enables the manufacturing of components using the FDM process with fiber reinforcement. This opens up new possibilities for optimizing components in terms of their strength and at the same time increasing sustainability by reducing materials consumption and waste. Within the scope of this work, different types of test specimens are to be designed, manufactured and examined. The test specimens are tensile specimens, which are used both for standardized tensile tests and for examining a practical component from automotive engineering used in student project. This project is a vehicle designed to compete in the Shell Eco-marathon, one of the world’s largest energy efficiency competitions. The aim is to design a vehicle that covers a certain distance with as little fuel as possible. Accordingly, it is desirable to manufacture the components with the lowest possible weight, while still ensuring the required rigidity. To achieve this, the use of fiber-reinforced 3D-printed parts is particularly suitable due to the high rigidity. In particular, the joining technology for connecting conventionally and additively manufactured components is developed. As a result, the economic efficiency was assessed, and guidelines for the design of components and joining elements were created. In addition, it could be shown that the additive manufacturing of the component could be implemented faster and more sustainably than the previous conventional manufacturing.
Adsorption of N2 and CO2 on Activated Carbon, AlO(OH) Nanoparticles, and AlO(OH) Hollow Spheres
(2015)
Eine neue Prozessidee zur Auftrennung racemischer Wirkstoffe unter Verwendung nanoskaliger AlO(OH)‐Hohlkugeln als Adsorbens und überkritischen Kohlenstoffdioxides (sc‐CO2) als Lösungsmittel wird vorgestellt. Zur Auslegung des Prozesses werden Untersuchungen zur Abscheidung der racemischen Wirkstoffe (RS)‐Flurbiprofen, (RS)‐Ibuprofen, (RS)‐Ketoprofen und den reinen Enantiomeren (R)‐Flurbiprofen, (S)‐Ibuprofen und (S)‐Ketoprofen an AlO(OH)‐Hohlkugeln präsentiert und bewertet. Zudem werden Adsorptionsdaten von gasförmigem CO2 an den Hohlkugeln und kommerziellen AlO(OH)‐Partikeln, die mit einer Magnetschwebewaage ermittelt wurden, verglichen. Abschließend werden erste Ergebnisse von orientierenden Versuchen zur Adsorption von racemischem Flurbiprofen aus sc‐CO2 an den Hohlkugeln vorgestellt.