004 Informatik
Refine
Year of publication
Document Type
- Bachelor Thesis (53)
- Master's Thesis (34)
- Conference Proceeding (6)
- Contribution to a Periodical (5)
- Article (reviewed) (2)
- Book (2)
- Doctoral Thesis (2)
Conference Type
- Konferenzartikel (6)
Keywords
- IT-Sicherheit (12)
- JavaScript (9)
- Deep learning (5)
- Blockchain (4)
- Computersicherheit (4)
- E-Learning (4)
- HTML 5.0 (4)
- Internet der Dinge (4)
- Internet of Things (4)
- Künstliche Intelligenz (3)
Institute
- Fakultät Medien (M) (ab 22.04.2021) (37)
- Fakultät Medien und Informationswesen (M+I) (bis 21.04.2021) (36)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (21)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (6)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (4)
- Zentrale Einrichtungen (3)
- Fakultät Wirtschaft (W) (2)
- IMLA - Institute for Machine Learning and Analytics (1)
Open Access
- Closed Access (47)
- Open Access (29)
- Closed (28)
- Diamond (4)
Im Kundenauftrag betreibt Herrenknecht mehrere hundert Industrie-PCs auf Tunnelbohrmaschinen, die für den Vortrieb von entscheidender Bedeutung sind. Die Überwachung der Software erfolgt mittels des Monitoring-Tools Icinga2, während das Configuration Management Tool Ansible für die Bereitstellung und Wartung verantwortlich ist. Derzeit besteht keine Verbindung zwischen Monitoring und Configuration Management. Im Rahmen dieser Bachelorarbeit soll eine Web-Anwendung mit Backend entwickelt werden, welche authorisiert und an das Herrenknecht Active Directory angebunden ist. Die Anwendung soll die Infrastruktur visualisieren, die mit den oben genannten Werkzeugen verwaltet wird, und es ermöglichen, Alarmierungen durch Icinga2 direkt einem PC und somit einer Baustelle zuzuordnen. Idealerweise soll es auch möglich sein, einen Alarm durch geeignete Maßnahmen mit Hilfe von Ansible zu beheben. Es ist von Bedeutung, dass Veränderungen an den Industrie-PCs nur nach expliziter Nachfrage und Freigabe durch den Kunden durchgeführt werden dürfen.
Ziel dieser Arbeit ist es, die Warenwirtschaftskomponente einer Cloudbasierten Buchhaltungssoftware strukturiert neu zu entwickeln. In einem ersten Schritt wurden hierfür mehrere Software-Architekturen vorgestellt. Daraufhin wurde das bestehende System analysiert, um sowohl die Wahl der Warenwirtschaftskomponente zu begründen als auch deren Funktionen zu identifizieren. Im nächsten Schritt wurde, um eine getrennte Entwicklung und Veröffentlichung zu ermöglichen, entschieden die Komponente aus dem bestehenden System zu trennen und in einem neuen Service zu kapseln. Um diese Migrationsstrategie zu realisieren und den entstehenden Service wartbar, zuverlässig und zukunftssicher zu gestalten, wurde die Implementierung mit Hilfe der Hexagonalen-Architektur realisiert. Die hierfür nötigen Schritte wurden hierbei dokumentiert. Anschließend wurde dieser neue Service getestet. Dabei wurden sowohl der Quellcode mithilfe automatisierter Tests als auch die erreichten und fehlenden Funktionalitäten und Anforderungen mit einem Soll-Ist-Vergleich identifiziert und dokumentiert.
Das Buch beschreibt die Arbeitsweise von Autodesk Vault Workgroup / Professional.
Schwerpunkte dieses Buches sind die Funktionen und Arbeitsweisen aus der Sicht des Anwenders.
Das Zusammenspiel zwischen Autodesk Vault Workgroup / Professional und Autodesk Inventor sowie das Arbeiten mit dem Vault Explorer sind Schwerpunkte dieses Buches.
Der Anwender lernt die, für seine tägliche Arbeit benötigten Funktonen kennen.
Das Buch richtet sich an Anwender, die mit Autodesk Vault Workgroup oder Vault Professional beginnen.
Kenntnisse von Vault Basic erleichtern den Einstieg.
Das Buch ist zum Selbststudium, zum Seminareinsatz und als Nachschlagewerk bestens geeignet.
Die wichtigsten Schritte wurden als Filme aufgenommen und als QR-Code bzw. Link im Buch hinterlegt.
Der Anwender kann sich so die Schritte im Film angesehen und nachvollziehen.
Though the basic concept of a ledger that anyone can view and verify has been around for quite some time, today’s blockchains bring much more to the table including a way to incentivize users. The coins given to the miner or validator were the first source of such incentive to make sure they fulfilled their duties. This thesis draws inspiration from other peer efforts and uses this same incentive to achieve certain goals. Primarily one where users are incentivised to discuss their opinions and find scientific or logical backing for their standpoint. While traditional chains form a consensus on a version of financial "truth", the same can be applied to ideological truths too. To achieve this, creating a modified or scaled proof of stake consensus mechanism is explored in this work. This new consensus mechanism is a Reputation Scaled - Proof of Stake. This reputation can be built over time by voting for the winning side consistently or by sticking to one’s beliefs strongly. The thesis hopes to bridge the gap in current consensus algorithms and incentivize critical reasoning.
Garbage in, Garbage out: How does ambiguity in data affect state-of-the-art pedestrian detection?
(2024)
This thesis investigates the critical role of data quality in computer vision, particularly in the realm of pedestrian detection. The proliferation of deep learning methods has emphasised the importance of large datasets for model training, while the quality of these datasets is equally crucial. Ambiguity in annotations, arising from factors like mislabelling, inaccurate bounding box geometry and annotator disagreements, poses significant challenges to the reliability and robustness of the pedestrian detection models and their evaluation. This work aims to explore the effects of ambiguous data on model performance with a focus on identifying and separating ambiguous instances, employing an ambiguity measure utilizing annotator estimations of object visibility and identity. Through accurate experimentation and analysis, trade-offs between data cleanliness and representativeness, noise removal and retention of valuable data emerged, elucidating their impact on performance metrics like the log average miss-rate, recall and precision. Furthermore, a strong correlation between ambiguity and occlusion was discovered with higher ambiguity corresponding to greater occlusion prevalence. The EuroCity Persons dataset served as the primary dataset, revealing a significant proportion of ambiguous instances with approximately 8.6% ambiguity in the training dataset and 7.3% in the validation set. Results demonstrated that removing ambiguous data improves the log average miss-rate, particularly by reducing the false positive detections. Augmentation of the training data with samples from neighbouring classes enhanced the recall but diminished precision. Error correction of wrong false positives and false negatives significantly impacts model evaluation results, as evidenced by shifts in the ECP leaderboard rankings. By systematically addressing ambiguity, this thesis lays the foundation for enhancing the reliability of computer vision systems in real-world applications, motivating the prioritisation of developing robust strategies to identify, quantify and address ambiguity.
Immer mehr Unternehmen setzen auf eine Cross-Cloud-Strategie, die es Unternehmen ermöglicht, ihre Anwendungen und Daten über mehrere Cloud-Plattformen hinweg effizient zu verwalten und zu betreiben. Konsistenz und Atomarität zwischen den Cloud-Plattformen zu wahren, stellt eine große Herausforderung dar. Hierzu wird in dieser Arbeit eine Lösung vorgestellt, um Cross-Cloud-Atomarität zu erreichen, welche auf Basis des 2-Phasen-Commit-Protokolls (2PC) beruht. In diesem Zusammenhang wird die Funktionsweise des 2PC-Protokolls erörtert und Erweiterungen sowie Alternativen zum Protokoll kurz angesprochen. Zusätzlich werden alternative Lösungsansätze diskutiert, die für die Erzielung von Cross-Cloud-Atomarität in Betracht gezogen werden können. Dadurch wird ein umfassender Einblick in das Thema sowie mögliche Lösungsansätze für diese Herausforderung gewährt.
Die vorliegende Arbeit beschäftigt sich mit der Nutzung von Reinforcement Learning in der Informationsbeschaffungs-Phase eines Penetration Tests. Es werden Kernprobleme in den bisherigen Ansätzen anderer das Thema betreffender wissenschaftlicher Arbeiten analysiert und praktische Lösungsansätze für diese bisherigen Hindernisse vorgestellt und implementiert. Die Arbeit zeigt damit eine beispielhafte Implementierung eines Reinforcement Learning Agenten zur Automatisierung der Informationsbeschaffungs-Phase eines Penetration Tests und stellt Lösungen für existierende Probleme in diesem Bereich dar.
Eingebettet wird diese wissenschaftliche Arbeit in die Anforderungen der Herrenknecht AG hinsichtlich der Absicherung des Tunnelbohrmaschinen-Netzwerks. Dabei werden praktische Ergebnisse des eigen entwickelten Reinforcement Learning Modells im Tunnelbohrmaschinen-Test-Netzwerk der Herrenknecht AG vorgestellt.
JavaScript-Frameworks (JSF) sind im Bereich der Webentwicklung seit längerem prominent. Jährlich werden neue JSF entwickelt, um spezifische Probleme zu lösen. In den letzten Jahren hat sich der Trend entwickelt, bei der Wahl des JSF verstärkt auch auf die Performanz der entwickelten Webseite zu achten. Dabei wird versucht, den Anteil an JavaScript auf der Webseite zu reduzieren oder ganz zu eliminieren. Besonders neu ist der Ansatz der "Island Architecture", die erstmals 2019 vorgeschlagen wurde. In dieser Thesis soll die Performanz der meistbenutzten und des performantesten JSF mit dem JSF "Astro" verglichen werden, welches die "Island Architecture" von sich aus unterstützt. Der Schwerpunkt liegt beim Vergleichen der Webseitenperformanz, jedoch werden auch Effizienz und Einfachheit während der Entwicklung untersucht. Das Ziel dieser Arbeit ist es, potenzielle Frameworks zu untersuchen, die die Effizienz und Produktivität für den Nutzer und während der Entwicklung steigern können.
In der Marketingstrategie von Event- und Club-Veranstaltern ist eine zielgerichtete Ansprache der Kundschaft unerlässlich, um eine nachhaltige Beziehung zur Zielgruppe aufzubauen und so den geschäftlichen Erfolg zu sichern. Während erhebliche Investitionen in herkömmliche Werbekanäle wie soziale Medien fließen, bleiben diese Plattformen oft ohne Garantie, dass die Werbemittel die relevanten Nutzer erreichen. Die White-Label-App beabsichtigt dieses Problem zu beheben, indem es Veranstaltern ermöglicht wird, eine engagierte Community direkt über die mobile Plattform aufzubauen und mit dieser zielgerichtet zu kommunizieren.
Das Kernziel der Bachelorarbeit ist die prototypische Entwicklung dieser Smartphone-App als individualisierbare und modulare White-Label-Lösung, die präzise auf die Bedürfnisse von Veranstaltern und deren Kunden zugeschnitten ist. Hierbei ist die zentrale Forschungsfrage: Wie kann eine modulare und individualisierbare White-Label-App effizient implementiert werden?
Zur Beantwortung dieser Frage werden auf Basis einer Wettbewerbsanalyse und der gründlichen Bewertung aktueller Best Practices im Bereich der App-Entwicklung verschiedene Aspekte untersucht. Hierzu zählen die Identifikation von möglichen Marktlücken und -chancen, die Eignung verschiedener Technologien und Entwurfsmuster, die Überwindung spezifischer Herausforderungen bei der Implementierung einer White-Label-App und die performante Integration der API.
Um einen praxisorientierten Ansatz zu gewährleisten, werden darüber hinaus verschiedene Kernfunktionalitäten der App beispielhaft implementiert. Dazu gehören Features wie eine Eventübersicht mit Informationen zu Veranstaltungen und ein Ticketingsystem mit Reservierungsmöglichkeiten.
This thesis focuses on the development and implementation of a Datagram Transport Layer Security (DTLS) communication framework within the ns-3 network simulator, specifically targeting the LoRaWAN model network. The primary aim is to analyse the behaviour and performance of DTLS protocols across different network conditions within a LoRaWAN context. The key aspects of this work include the following.
Utilization of ns-3: This thesis leverages ns-3’s capabilities as a powerful discrete event network simulator. This platform enables the emulation of diverse network environments, characterized by varying levels of latency, packet loss, and bandwidth constraints.
Emulation of Network Challenges: The framework specifically addresses unique challenges posed by certain network configurations, such as duty cycle limitations. These constraints, which limit the time allocated for data transmission by each device, are crucial in understanding the real-world performance of DTLS protocols.
Testing in Multi-client-server Scenarios: A significant feature of this framework is its ability to test DTLS performance in complex scenarios involving multiple clients and servers. This is vital for assessing the behaviour of a protocol under realistic network conditions.
Realistic Environment Simulation: By simulating challenging network conditions, such as congestion, limited bandwidth, and resource constraints, the framework provides a realistic environment for thorough evaluation. This allows for a comprehensive analysis of DTLS in terms of security, performance, and scalability.
Overall, this thesis contributes to a deeper understanding of DTLS protocols by providing a robust tool for their evaluation under various and challenging network conditions.
Die Bachelorarbeit „Forensic Chain – Verwaltung digitaler Spuren in Deutschland“ untersucht die Anwendung eines Blockchain-basierten Chain of Custody Systems im deutschen rechtlichen und regulatorischen Kontext. Die digitale Forensik, die sich mit der Sicherung und Analyse digitaler Spuren befasst, gewinnt an Bedeutung, da kriminelle Aktivitäten vermehrt im digitalen Raum stattfinden. Die Blockchain-Technologie bietet transparente und unveränderliche Aufzeichnungen, die sich für die Speicherung von Informationen im Zusammenhang mit digitalen Beweismitteln eignen. Das Hautpziel der Arbeit besteht darin, die Umsetzung eines Chain of Custody Prozesses im Forensic Chain System zu untersuchen und die Eignung dieses Systems im deutschen Raum zu bewerten. Hierfür wird ein Prototyp des Forensic Chain Systems entwickelt, um das erstellte Konzept zu testen. Die Ergebnisse tragen zum Verständnis der Wichtigkeit der digitalen Forensik in Deutschland bei und bieten Einblicke in die Einführung von Blockchain-basierten Chain of Custody-Systemen in diesem Bereich. Sie leisten einen Beitrag zur Weiterentwicklung der digitalen Forensik.
Das automatisierte Erkennen von Schwachstellen wird immer wichtiger. Gerade bei der Softwareentwicklung werden immer häufiger Schwachstellenscanner eingesetzt. Das Ziel der vorliegenden Arbeit ist es einen Überblick zu erhalten, welche Schwachstellenscanner für Webanwendungen existieren und wie sinnvoll deren Einsatz ist. Um diese Frage zu beantworten, werden vier auf dem Markt verfügbare Schwachstellenscanner getestet. Aus der bisherigen Infrastruktur von M und M Software werden Anforderungen und Selektionskriterien abgeleitet. In zwei Testphasen werden verschiedene Schwachstellenscanner analysiert und bewertet wie gut sie die Kriterien erfüllen. Am Ende wird bewertet, ob der Einsatz eines Schwachstellenscanners in der Infrastruktur sinnvoll ist. Neben dieser Analyse wird außerdem untersucht welche Chancen die AI-Technologie für Schwachstellenscanner bietet.
Linux and Linux-based operating systems have been gaining more popularity among the general users and among developers. Many big enterprises and large companies are using Linux for servers that host their websites, some even require their developers to have knowledge about Linux OS. Even in embedded systems one can find many Linux-based OS that run them. With its increasing popularity, one can deduce the need to secure such a system that many personnel rely on, be it to protect the data that it stores or to protect the integrity of the system itself, or even to protect the availability of the services it offers. Many researchers and Linux enthusiasts have been coming up with various ways to secure Linux OS, however new vulnerabilities and new bugs are always found, by malicious attackers, with every update or change, which calls for the need of more ways to secure these systems.
This Thesis explores the possibility and feasibility of another way to secure Linux OS, specifically securing the terminal of such OS, by altering the commands of the terminal, getting in the way of attackers that have gained terminal access and delaying, giving more time for the response teams and for forensics to stop the attack, minimize the damage, restore operations, and to identify collect and store evidence of the cyber-attack. This research will discuss the advantages and disadvantages of various security measures and compare and contrast with the method suggested in this research.
This research is significant because it paints a better picture of what the state of the art of Linux and Linux-based operating systems security looks like, and it addresses the concerns of security enthusiasts, while exploring new uncharted area of security that have been looked at as a not so significant part of protecting the OSes out of concern of the various limitations and problems it entails. This research will address these concerns while exploring few ways to solve them, as well as addressing the ideal areas and situations in which the proposed method can be used, and when would such method be more of a burden than help if used.
Truth is the first causality of war”, is a very often used statement. What rather intrigues the mind is what causes the causality of truth. If one dives deeper, one may also wonder why is this so-called truth the first target in a war. Who all see the truth before it dies. These questions rarely get answered as the media and general public tends to focus more on the human and economic losses in a war or war like situation. What many fail to realize is that these truthful pieces of information are critical to how a situation further develops. One correct information may change the course of the whole war saving millions and one mis-information may do the opposite.
Since its inception, some studies have been conducted to propose and develop new applications for OSINT in various fields. In addition to OSINT, Artificial Intelligence is a worldwide trend that is being used in conjunction witThe question here is, what is this information. Who transmits this and how? What is the source. Although, there has been an extensive use of the information provided by the secret services of any nation, which have come handy to many, another kind of information system is using the one that is publicly available, but in different pieces. This kind of information may come from people posting on social media, some publicly available records and much more. The key part in this publicly available information is that these are just pieces of information available across the globe from various different sources. This could be seen as small pieces of a puzzle that need to be put together to see the bigger picture. This is where OSINT comes in place.
h other areas (AI). AI is the branch of computer science that is in charge of developing intelligent systems. In terms of contribution, this work presents a 9-step systematic literature review as well as consolidated data to support future OSINT studies. It was possible to understand where the greatest concentration of publications was, which countries and continents developed the most research, and the characteristics of these publications using this information. What are the trends for the next OSINT with AI studies? What AI subfields are used with OSINT? What are the most popular keywords, and how do they relate to others over time?A timeline describing the application of OSINT is also provided. It was also clear how OSINT was used in conjunction with AI to solve problems in various areas with varying objectives. Private investigators and journalists are no longer the primary users of open-source intelligence gathering and analysis (OSINT) techniques. Approximately 80-90 percent of data analysed by intelligence agencies is now derived from publicly available sources. Furthermore, the massive expansion of the internet, particularly social media platforms, has made OSINT more accessible to civilians who simply want to trawl the Web for information on a specific individual, organisation, or product. The General Data Protection Regulation (GDPR) of the European Union was implemented in the United Kingdom in May 2018 through the new Data Protection Act, with the goal of protecting personal data from unauthorised collection, storage, and exploitation. This document presents a preliminary review of the literature on GDPR-related work.
The reviewed literature is divided into six sections: ’What is OSINT?’, ’What are the risks?’ and benefits of OSINT?’, ’What is the rationale for data protection legislation?’, ’What are the current legislative frameworks in the UK and Europe?’, ’What is the potential impact of the GDPR on OSINT?’, and ’Have the views of civilian and commercial stakeholders been sought and why is this important?’. Because OSINT tools and techniques are available to anyone, they have the unique ability to be used to hold power accountable. As a result, it is critical that new data protection legislation does not impede civilian OSINT capabilities.
In this paper we see how OSINT has played an important role in the wars across the globe in the past. We also see how OSINT is used in our everyday life. We also gain insights on how OSINT is playing a role in the current war going on between Russia and Ukraine. Furthermore, we look into some of these OSINT tools and how they work. We also consider a use case where OSINT is used as an anti terrorism tool. At the end, we also see how OSINT has evolved over the years, and what we can expect in the future as to what OSINT may look like.
In den letzten Jahren ist die Relevanz des Wassersparens und der nachhaltigen Nutzung dieses lebenswichtigen Elements angesichts des Klimawandels und abnehmender Wasserressourcen erheblich gestiegen. In diesem Kontext legt die vorliegende Bachelorarbeit, die in Zusammenarbeit mit der Firma Hansgrohe erstellt wurde, den Fokus auf die Schaffung eines Konzeptes sowie der prototypischen Realisierung eines Serious Games. Das Ziel des Spiels ist es, bei Kindern ein Bewusstsein und Verständnis für die nachhaltige Wassernutzung zu fördern. Im Zuge des Projekts wurde ein iterativer Spiel-Design-Prozess verfolgt, um ein pädagogisch wertvolles und ansprechendes Spielkonzept zu entwickeln. Der nutzerzentrierte Ansatz war maßgeblich, um ein tiefgehendes Verständnis für die Bedürfnisse und Vorlieben der jungen Zielgruppe zu erlangen und somit ein optimal auf die Lernerfahrung abgestimmtes Produkt zu entwerfen. Das Spiel kombiniert Elemente der Exploration, Simulation und des Casual Gamings, um das Verständnis für die nachhaltige Wassernutzung auf spielerische und interaktive Weise zu vermitteln. Die Resultate der prototypischen Umsetzung wurden mittels Nutzertests überprüft, um die Effektivität und Benutzerfreundlichkeit zu sichern. Diese Arbeit unterstreicht nicht nur die Wichtigkeit eines verantwortungsvollen Umgangs von Wasser, sondern illustriert zudem, wie durch innovatives Spiel-Design die Bildung und Sensibilisierung von Kindern in Bezug auf zentrale ökologische Themen erreicht werden können.
Conceptualization and implementation of automated optimization methods for private 5G networks
(2023)
Today’s companies are adjusting to the new connectivity realities. New applications require more bandwidth, lower latency, and higher reliability as industries become more distributed and autonomous. Private 5th Generation (5G) networks known as 5G Non-Public Networks (5G-NPN), is a novel 3rd Generation Partnership Project (3GPP)- based 5G network that can deliver seamless and dedicated wireless access for a particular industrial use case by providing the mentioned application’s requirements. To meet these requirements, several radio-related aspects and network parameters should be considered. In many cases, the behavior of the link connection may vary based on wireless conditions, available network resources, and User Equipment (UE) requirements. Furthermore, Optimizing these networks can be a complex task due to the large number of network parameters and KPIs that need to be considered. For these reasons, traditional solutions and static network configuration are not affordable or simply impossible. Despite the existence of papers in the literature that address several optimization methods for cellular networks in industrial scenarios, more insight into these existing but complex or unknown methods is needed.
In this thesis, a series of optimization methods were implemented to deliver an optimal configuration solution for a 5G private network. To facilitate this implementation, a testing system was implemented. This system enables remote control over the UE and 5G network, establishment of a test environment, extraction of relevant KPI reports from both UE and network sides, assessment of test results and KPIs, and effective utilization of the optimization and sampling techniques.
The research highlights the advantageous aspects of automated testing by using OFAT, Simulated Annealing, and Random Forest Regressor methods. With OFAT, as a common sampling method, a sensitivity analysis and an impact of each single parameter variation on the performance of the network were revealed. With Simulated Annealing, an optimal solution with MSE of roughly 10 was revealed. And, in the Random Forest Regressor, it was seen that this method presented a significant advantage over the simulated annealing method by providing substantial benefits in time efficiency due to its machine- learning capability. Additionally, it was seen that by providing a larger dataset or using some other machine-learning techniques, the solution might be more accurate.
Künstliche Intelligenzen, Deep Learning und Machine-Learning-Algorithmen sind im digitalen Zeitalter zu einem Punkt gekommen, in dem es schwer ist zu unterscheiden, welche Informationen und Quellen echt sind und welche nicht. Der Begriff „Deepfakes“ wurde erstmals 2017 genutzt und hat bereits 2018 mit einer App bewiesen, wie einfach es ist, diese Technologie zu verwenden um mit Videos, Bildern oder Ton Desinformationen zu verbreiten, politische Staatsoberhäupter nachzuahmen oder unschuldige Personen zu deformieren. In der Zwischenzeit haben sich Deepfakes bedeutend weiterentwickelt und stellen somit eine große Gefahr dar.
Diese Arbeit bietet eine Einführung in das Themengebiet Deepfakes. Zudem behandelt sie die Erstellung, Verwendung und Erkennung von Deepfakes, sowie mögliche Abwehrmaßnahmen und Auswirkungen, welche Deepfakes mit sich bringen.
As e-commerce platforms have grown in popularity, new difficulties have emerged, such as the growing use of bots—automated programs—to engage with e-commerce websites. Even though some algorithms are helpful, others are malicious and can seriously hurt e-commerce platforms by making fictitious purchases, posting fictitious evaluations, and gaining control of user accounts. Therefore, the development of more effective and precise bot identification systems is urgently needed to stop such actions. This thesis proposes a methodology for detecting bots in E-commerce using machine learning algorithms such as K-nearest neighbors, Decision Tree, Random Forest, Support Vector Machine, and Neural Network. The purpose of the research is to assess and contrast the output of these machine learning methods. The suggested approach will be based on data that is readily accessible to the public, and the study’s focus will be on the research of bots in e-commerce.
The purpose of the study is to provide an overview of bots in e-commerce, as well as information on the different kinds and traits of bots, as well as current research on bots in e-commerce and associated work on bot detection in e-commerce. The research also seeks to create a more precise and effective bot detection system as well as find critical factors in detecting bots in e-commerce.
This research is significant because it sheds light on the increasing issue of bots in e-commerce and the requirement for more effective bot detection systems. The suggested approach for using machine learning algorithms to identify bots in ecommerce can give e-commerce platforms a more precise and effective bot detection system to stop malicious bot activities. The study’s results can also be used to create a more effective bot detection system and pinpoint key elements in detecting bots in e-commerce.
In dieser Arbeit wird der Bildbearbeitungsprozess von Dokumenten mithilfe von einem schlicht gehaltenem Neuronalen Netzwerk und Bearbeitungsoperationen optimiert. Ziel ist es, abfotografierte Dokumente zum Drucken aufzubereiten, sodass die Schrift gut lesbar, gerade und nicht verzerrt ist und Störfaktoren herausgefiltert werden. Als API zur Verfügung gestellt, können Bilder von Dokumenten beliebiger Größe und Schriftgröße bearbeitet werden. Während ein unter schlechten Bedingungen schräg aufgenommenes Bild nach Tesseract keine Buchstaben enthält, wird mit dem bearbeiteten Bild davon eine Buchstabenfehlerrate von 0,9% erreicht.