### Refine

#### Year of publication

- 2016 (3) (remove)

#### Document Type

#### Keywords

- Anisotropie (1)
- Finite-Elemente-Methode (1)
- Lasertechnologie (1)
- SAW-Bauelement (1)
- Schallwelle (1)
- Ultraschall (1)
- akustisches Bauelement (1)

In a recent paper it has been shown that the effective nonlinear constant which is used in a P-Matrix approach to describe third-order intermodulation (IMD3) in surface acoustic wave (SAW) devices can be obtained from finite element (FEM) calculations of a periodic cell using nonlinear tensor data [1]. In this paper we extend this FEM calculation and show that the IMD3 of an infinite periodic array of electrodes on a piezoelectric substrate can be directly simulated in the sagittal plane. This direct approach opens the way for a FEM based simulation of nonlinearities for finite and generalized structures avoiding the simplifications of phenomenological approaches.

Laser pulses focused near the tip of an elastic wedge generate acoustic waves guided at its apex. The shapes of the acoustic wedge wave pulses depend on the energy and the profile of the exciting laser pulse and on the anisotropy of the elastic medium the wedge is made of. Expressions for the acoustic pulse shapes have been derived in terms of the modal displacement fields of wedge waves for laser excitation in the thermo-elastic regime and for excitation via a pressure pulse exerted on the surface. The physical quantity considered is the local inclination of a surface of the wedge, which is measured optically by laser-probe-beam deflection. Experimental results on pulse shapes in the thermo-elastic regime are presented and confirmed by numerical calculations. They pertain to an isotropic sharp-angle wedge with two wedge-wave branches and to a non-reciprocity phenomenon at rectangular silicon edges.

The existence of acoustic waves with displacements localized at the tip of an isotropic elastic wedge was rigorously proven by Kamotskii, Zavorokhin and Nazarov. This proof, which is based on a variational approach, is extended to rectangular anisotropic wedges. For two high-symmetry configurations of rectangular edges in elastic media with tetragonal symmetry, a criterion is derived that allows identifying the boundary between the regions of existence for wedge modes of even and odd symmetry in regions of parameter space, where even- and odd-symmetry modes do not exist simultaneously. Furthermore, rectangular edges with non-equivalent surfaces are analyzed, and it is shown that at rectangular edges of cubic elastic media with one (110) surface and one (001) surface, a tip-localized guided wave always exists, apart from special cases that are characterized.