Refine
Year of publication
- 2014 (75) (remove)
Document Type
- Conference Proceeding (27)
- Article (reviewed) (23)
- Article (unreviewed) (15)
- Book (4)
- Part of a Book (3)
- Bachelor Thesis (2)
- Contribution to a Periodical (1)
Language
- English (75) (remove)
Keywords
- Intelligentes Stromnetz (5)
- Lithiumbatterie (4)
- Produktion (4)
- Elektrolyt (3)
- Netzwerk (3)
- Photonik (3)
- Positronen-Emissions-Tomografie (3)
- SPECT (3)
- Algorithmus (2)
- Ausbildung (2)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (45)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (17)
- INES - Institut für Energiesystemtechnik (11)
- Fakultät Medien und Informationswesen (M+I) (9)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (8)
- IUAS - Institute for Unmanned Aerial Systems (2)
Photonics meet digital art
(2014)
The paper focuses on the work of an interdisciplinary project between photonics and digital art. The result is a poster collection dedicated to the International Year of Light 2015. In addition, an internet platform was created that presents the project. It can be accessed at http://www.magic-of-light.org/iyl2015/index.htm. From the idea to the final realization, milestones with tasks and steps will be presented in the paper. As an interdisciplinary project, students from technological degree programs were involved as well as art program students. The 2015 Anniversaries: Alhazen (1015), De Caus (1615), Fresnel (1815), Maxwell (1865), Einstein (1905), Penzias Wilson, Kao (1965) and their milestone contributions in optics and photonics will be highlighted.
Since direct current high energy shock fulguration was initially performed in the mid 1980s, ablation of cardiac arrhythmias has come to widespread use. Today the most frequently used energy source for catheter ablation is radio frequency (RF). It was the German engineer Peter Osypka who made available the HAT 100 as the first simple commercial RF ablator.
Nevertheless, in the first years of ablation, physicians were effectively working in the dark. Until today with an increasing understanding of arrhythmia mechanisms, both at the atrial and ventricular levels, this curative technology has made tremendous progress. Now, due to crucial improvement of RF ablation generators, temperature and contact force sensor catheters in combination with non-flouroscopic electroanatomical mapping technologies, computerized temperature and impedance controlled radiofrequency catheter ablation can be used to cure all types of arrhythmias including atrial and ventricular fibrillation. For the latter, cooled ablation by saline solution irrigated catheters has been developed to a widely used standard method. This procedure resulting in pulmonary vein isolation requires transseptal puncture and is technically demanding. Nevertheless, it has shown to be more effective than antiarrhythmic drug therapy.
While earliest RF ablations were performed with non-steerable catheters, today are used steerable sensor catheters without or with external and internal cooling and tips of 4mm or 8mm length. Further innovations like integration of mapping and cardiac imaging give exact information of the number of pulmonary veins and branching patterns and help to correlate electrical signals with anatomical structures.
The magnetic navigation significantly improved the success rates and safety of catheter ablation. Thus, in most cases RF catheter ablation has developed in the treatment of supraventricular arrhythmias from an alternative approach to drug therapy into the first therapeutic choice providing low complication rates.
In future, robotic navigation will further simplify procedures and reduce radiation exposure of this curative approach.
Introduction: Despite lots of developments in the last years, radiofrequency ablation of rhythm diseases is a safe but still complex procedure that requires special experience and expertise of the physicians and biomedical engineers. Thus, there is a need of special trainings to become familiar with the different equipment and to explain several effects that can be observed during clinical routine.
Methods: The Offenburg University of Applied Sciences offers a biomedical engineering study path specialized in the fields of cardiology, electrophysiology and cardiac electronic implants. It`s Peter Osypka Institute for Pacing and Ablation provides teaching following the slogan “Learning by watching, touching and adjusting”. It conducts lots of trainings for students as well as young physicians interested in electrophysiology and radiofrequency ablation.
Results: In-vitro trainings will be provided using the Osypka HAT 200 and HAT300s, Stockert EPshuttle and SmartAblate system as well as the Boston EPT-1000XP and Maestro 3000 and the Radionics RFG-3E cardiac radio frequency ablation generators. All of them require different handling as well as special accessories like catheter connection cables or boxes and back plates. The participants will be trained in the setup of temperature, power and cut-off impedance dependent on different ablation catheters. Furthermore troubleshooting in hard- and software is part of the program. Performing procedures in pork or animal protein and using physiological saline solution to simulate the blood flow, they can study the influence of contact force and impedance on lesion geometry etc. and to avoid adverse effects like “plops”. Lots of catheter types are available: 4mm tip, 8mm standard and gold tip, open and closed irrigated tip ablation catheters of different companies. The experiments will be completed by measuring the lesion size dependent on the used catheter type and ablation settings.
Conclusion: In-vitro training in radiofrequency ablation is a challenge for biomedical engineering students and young physicians.
A wide range catalyst screening with noble metal and oxide catalysts for a metal–air battery with an aqueous alkaline electrolyte was carried out. Suitable catalysts reduce overpotentials during the charge and discharge process, and therefore improve the round-trip efficiency of the battery. In this case, the electrodes will be used as optimized cathodes for a future lithium–air battery with an aqueous alkaline electrolyte. Oxide catalysts were synthesized via atmospheric plasma spraying. The screening showed that IrO2, RuO2, La0.6Ca0.4Co3, Mn3O4, and Co3O4 are promising bi-functional catalysts. Considering the high price for the noble metal catalysts further investigations of the oxide catalysts were carried out to analyze their electrochemical behavior at varied temperatures, molarities, and in case of La1−x Ca x CoO3 a varying calcium content. Additionally all catalysts were tested in a longterm test to proof cyclability at varied molarities. Further investigations showed that Co3O4 seems to be the most promising bi-functional catalyst of the tested oxide catalysts. Furthermore, it was shown that a calcium content of x = 0.4 in LCCO has the best performance.
We tested the MOF framework Cu-BTC for natural gas (NG) storage. Adsorption isotherms of C1–C4 alkanes were simulated applying the Grand Canonical ensemble and the Monte Carlo algorithm in a classical molecular mechanics approach. Experimental monocomponent isotherm of the alkanes was used to validate the force field. We performed multicomponent adsorptions calculations for three different quaternary mixtures of C1–C4 alkanes, matching typical NG streams composition, and predicted theoretical storage capacities, efficiency and accumulation of the NG within that composition. Despite being one of the frameworks with greatest storage capacity of methane, we found that Cu-BTC presented great sensitivity to the variation of the heavier alkanes in NG composition. When we increase the percentage of butane from 0.1% to 0.7% in the mixture, the mass of components retained in the discharge pressure (1 bar) increases from 35 to 60%. We also perform siting and interaction energy investigations and compare the NG storage performance of the Cu-BTC with that of activated carbons. To our knowledge, this is the first study regarding the efficiency of the NG storage in Cu-BTC.
Private households constitute a considerable share of Europe's electricity consumption. The current electricity distribution system treats them as effectively passive individual units. In the future, however, users of the electricity grid will be involved more actively in the grid operation and can become part of intelligent networked collaborations. They can then contribute the demand and supply flexibility that they dispose of and, as a result, help to better integrate renewable energy in-feed into the distribution grids.
A laser-operated, angle-tunable transducer was employed to excite selectively elastic waves guided along the apex of a solid wedge. The propagation of wedge waves at anisotropic monocrystalline silicon edges with different symmetry properties was studied by optical detection. The reduced symmetry in crystals, as compared to isotropic media, causes a number of new features, such as the existence of supersonic leaky wedge waves, tilted spatial pulse profiles, and other peculiarities of their localization. Experimental and theoretical results are presented for three different types of symmetry configurations: the wedge symmetric about its midplane, the wedge symmetric about the plane normal to its apex line, and the wedge symmetric about one of its faces. The experiments include accurate measurements of the phase velocity and the wave field distribution, providing information on localization and coupling of wedge waves with other waves. Theoretically, the wedge waves were treated by the Laguerre function method, extended to modes that are not localized at the tip of the wedge. This approach allowed an accurate description of the observed localized and leaky wedge waves in anisotropic wedges.
HiSiMo cast irons are frequently used as material for high temperature components in engines as e.g. exhaust manifolds and turbo chargers. These components must withstand severe cyclic mechanical and thermal loads throughout their life cycle. The combination of thermal transients with mechanical load cycles results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material and, after a certain number of loading cycles, to failure of the component. In Part I of the paper, a fracture mechanics model for TMF life prediction was developed based on results of uniaxial tests. In this paper (Part II), the model is formulated for three-dimensional stress states, so that it can be applied in a post-processing step of a finite-element analysis. To obtain reliable stresses and (time dependent plastic) strains in the finite-element calculation, a time and temperature dependent plasticity model is applied which takes non-linear kinematic hardening into account. The material properties of the model are identified from the results of the uniaxial test. The plasticity model and the TMF life model are applied to assess the lifetime of an exhaust manifold.
Transcatheter aortiv valve implantation is a new safe strategy treatment for patients with symptomatic severe aortic stenosis and high operative risk. The aim of the study was to compare the pre-and post- muiscatheter aortiv valve implantation procedures to determine the atrioventricuktr conduction time as a potential predictor of permanent pacemaker therapy requirement after transcatheter aortiv valve implantation. The transcatheter aortiv valve implantation patients were divided into groups without pacemaker and with dual or single chamber pacemEtker with diffent atrioventrieular conduction time disturbance before and after transcatheter aortiv valve implantation. In heart failure, patients without permanent pacemaker therapy after transcatheter aortiv valve implantation, atrioventricular conduction time was prolonged after transcatheter aortiv valve implantation. In patients with permanent dual chamber pacemaker therapy after transcatheter aortiv valve implantation, atrioventricular conduction time was normalised with dual chaniber atrioventrieuku pacing mode. Atrioventricular conduction time may be a useful parameter to evaluate the risk of post-procedural atrioventricular conduction block and permanent pacemaker therapy in transcatheter north, valve implantation patients.
Non-fluoroscopic Imaging with MRT/CT Image Integration Catheter Positioning with Double Precision
(2014)
Introduction: When antiarrhythmic drug therapy has failed, different approaches of pulmonary vein isolation are considered a reasonable option in the treatment of atrial fibrillation. It will be performed predominantly by radiofrequency catheter ablation. As the individual anatomy of left atrium and the pulmonary veins differs considerably, accurate visualization of these structures is essential during catheter positioning. Using non-fluoroscopic electroanatomic mapping system with image integration, electroanatomic mapping can be combined with highly detailed anatomical MRT or CT information on complex left atrial structures. This may facilitate catheter navigation during ablation for atrial fibrillation.
Methods: The CARTO XP electroanatomic system was used in a project during biomedical engineering study to practice image integration of anonymized real patients that underwent pulmonary vein isolation by CARTO XP and a MRT/CT procedure. Using the image integration software, MRT or CT images were imported into the CARTO XP system. The next process was segmentation of the acquired images. It involves dividing the images into different regions in order to select the structures of interest. In clinical routine, this segmentation has to be performed before catheter ablation. Then, the segmented images were aligned with the reconstructed electroanatomic maps. This consists of several steps, including selection of the left atrium, scaling of the reconstructed geometry, fusion of the structures using landmarks, and optimization of the integration by adjusting the reconstructed geometry of the left atrium.
Results: In the 3 months lasting period of the project, image integration was trained in 13 patients undergoing catheter ablation for atrial fibrillation. Within this period, time consumption for the process decreased from about 90 minutes at the beginning to about 35 minutes at the end for one patient.
Conclusion: Image integration into non-fluoroscopic electroanatomic map is a sophisticated tool in cardiac radiofrequency catheter ablation. Intensive training is necessary to control the procedure.
Using patent information for identification of new product features with high market potential
(2014)
Cardiac resynchronization therapy is an established therapy for heart failure patients with sinus rhythm, reduced left ventricular ejection fraction and prolongation of QRS duration. The aim of the study was to evaluate ventricular desynchronization with electrical interventricular delay (IVD) to left ventricular delay (LVD) ratio in atrial fibrillation heart failure patients. IVD and LVD were measured by transesophageal posterior left ventricular ECG recording. In atrial fibrillation heart failure patients with prolonged QRS duration, the mean IVD-to-LVD-ratio was 0.84 +/- 0.42 with a range from 0.17 to 2.2 IVD-to-LVD-ratio. IVD-to-LVD-ratio correlated with QRS duration. IVD-to-LVD-ratio may be a useful parameter to evaluate electrical ventricular desynchronization in atrial fibrillation heart failure patients.
Cardiac resynchronization therapy with atrioventricular and interventricular pacing delay optimized biventricular pacing is an established therapy for heart failure patients with sinus rhythm and reduced left ventricular ejection fraction. The aim of the study was to evaluate atrioventricular and interventricular pacing delay optimization in cardiac resynchroniza-tion therapy by transthoracic impedance cardiography in biventricular pacing with different left ventricular electrode po-sition. In biventricular pacing heart failure patients with lateral, posterolateral and anterolateral left ventricular electrode position, the mean optimal atrioventricular sening delay was 108.6 ± 20.3 ms and the mean optimal interventricular pac-ing delay -12.3 ± 25.9 ms. Transthoracic impedance cardiography may be a useful technique to optimize atrioventricular and interventricular pacing delay in biventricular pacing with different left ventricular electrode position.
Smoothie: a solution for device and content independent applications including 3D imaging as content
(2014)
Network landscape of recent time contains many different network technologies, a wide range of end-devices with a large scale of capabilities and power, and an immense quantity of information represented in different data formats. Research on 3D imaging, virtual reality and holographic techniques will result in new user interfaces (UI) for mobile devices and will increase their diversity and variety. A lot of effort is being made in order to establish open, scalable and seamless integration of various technologies and content presentation for different devices including those that are mobile, considering the individual situation of the end user. Till today the research is going on in different parts of the world but the task is not completed yet. The goal of this research work is to find a way to solve the above stated problems by investigating system architectures to provide unconstrained, continuous and personalized access to the content and interactive applications everywhere and at anytime with different devices. As a Solution of the problem considered, a new architecture named “Smoothie” is proposed.
HiSiMo cast irons are frequently used as material for high temperature components in engines as e.g. exhaust manifolds and turbo chargers. These components must withstand severe cyclic mechanical and thermal loads throughout their service life. The combination of thermal transients with mechanical load cycles results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material and, after a certain number of loading cycles, to failure of the component. In this paper (Part I), the low-cycle fatigue (LCF) and TMF properties of HiSiMo are investigated in uniaxial tests and the damage mechanisms are addressed. On the basis of the experimental results a fatigue life model is developed which is based on elastic, plastic and creep fracture mechanics results of short cracks, so that time and temperature dependent effects on damage are taken into account. The model can be used to estimate the fatigue life of components by means of finite-element calculations (Part II of the paper).
Impedance of the Surface Double Layer of LSCF/CGO Composite Cathodes: An Elementary Kinetic Model
(2014)
A former remote area power supply was converted to a smart cogeneration subnet with combined heat and power to develop and validate a forecast based energy management at the University of Applied Sciences in Offenburg/Germany. Locally processed weather forecasts and forecasted demand profiles are integrated to allow a precise reaction to changes of fluctuating power sources, changes in scheduled demand profiles and to improve the energy efficiency of the supply. The management of the electrical and thermal storages is influenced by the forecasted energy contributions and the forecasted demand. Further approaches should improve the accuracy of forecasting algorithms and integrate parameter models gained of a detailed monitoring to realize predictive controllers.
Nowadays, it is assumed of many applications, companies and parts of the society to be always available online. However, according to [Times, Oct, 31 2011], 73% of the world population do not use the internet and thus aren't “online” at all. The most common reasons for not being “online” are expensive personal computer equipment and high costs for data connections, especially in developing countries that comprise most of the world’s population (e.g. parts of Africa, Asia, Central and South America). However it seems that these countries are leap-frogging the “PC and landline” age and moving directly to the “mobile” age. Decreasing prices for smart phones with internet connectivity and PC-like operating systems make it more affordable for these parts of the world population to join the “always-online” community. Storing learning content in a way accessible to everyone, including mobile and smart phones, seems therefore to be beneficial. This way, learning content can be accessed by personal computers as well as by mobile and smart phones and thus be accessible for a big range of devices and users. A new trend in the Internet technologies is to go to “the cloud”. This paper discusses the changes, challenges and risks of storing learning content in the “cloud”. The experiences were gathered during the evaluation of the necessary changes in order to make our solutions and systems “cloud-ready”.
Formal Description of Inductive Air Interfaces Using Thévenin's Theorem and Numerical Analysis
(2014)
With the development of new integrated circuits to interface radio frequency identification protocols, inductive air interfaces have become more and more important. Near field communication is not only able to communicate, but also possible to transfer power wirelessly and to build up passive devices for logistical and medical applications. In this way, the power management on the transponder becomes more and more relevant. A designer has to optimize power consumption as well as energy harvesting from the magnetic field. This paper discusses a model with simple equations to improve transponder antenna matching. Furthermore, a new numerical analysis technique is presented to calculate the coupling factors, inductions, and magnetic fields of multiantenna systems.
Introduction: Radiofrequency ablation allows successful treatment of most supraventricular reentrant and focal tachycardias and an increasing number of ventricular tachycardias. Different catheter tips are used. While AV nodal reentrant tachycardias require catheters with a tip of 4mm length, an 8 mm tip electrodes will be used for atrial flutter. A pulmonary vein isolation will be performed using 4 mm irrigated tip electrodes to achieve larger and deeper lesions. The need of a tubing set and pump for saline transfusion is a disadvantage of this technique. Gold tip electrodes can alternatively be used to produce increases in lesion size. Aim of this study was to compare RF ablation catheters of exactly the same geometry with either platin-iridum or gold tip.
Methods: Gold provides an almost four-fold thermal conductivity compared with platinum-iridium. The Cerablate G flutter (Osypka AG, Rheinfelden-Herten) is a newly designed radiofrequency ablation catheter with an 8 mm gold tip. Its power delivery was compared with the Cerablate flutter of same geometry but platin-iridium tip. Therefore, in-vitro RF ablations were performed using pork meat in a 0.9% saline solution at 37°C temperature. A pulsed volume flow was generated using a pump to simulate the blood flow. Temperature controlled ablations of 60 seconds using 45, 55 and 65°C and a maximum of 70W RF power were performed.
Results: Using the Osypka HAT300smart ablator, cumulative power of 167, 474 and 672W was delivered with gold tip against 121, 227 and 310 W with platin-iridium tip. By the Stockert SmartAblate G4 ablator, 202, 546 and 1075W was delivered with gold tip against 117, 246 and 394W with platin-iridium using 45, 55 and 65°C temperature.
Conclusion: During in-vitro investigations, the gold tip electrodes allowed a in power delivery increase of 117 up to 173%. Thus, gold tips can be used to increase lesion depth and diameter without cooling equipment.
Hybrid SPECT/US
(2014)
PET and SPECT of Neurobiological Systems combines the expertise of renowned authors whose dedication to the development of novel probes and techniques for the investigation of neurobiological systems has achieved international recognition. Various aspects of neurotransmission in the brain are discussed, such as visualization and quantification of (more than 20 different) neuroreceptors, neuroinflammatory markers, transporters, and enzymes as well as neurotransmitter synthesis, β-amyloid deposition, cerebral blood flow, and the metabolic rate of glucose. The latest results in probe development are also detailed.
Most chapters are written jointly by radiochemists and nuclear medicine specialists to ensure a multidisciplinary approach. This state of the art compendium will be valuable to anyone in the field of clinical or preclinical neuroscience, from the radiochemist and radiologist/nuclear medicine specialist to the interested neurobiologist and general practitioner. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences. Other volumes focus on PET and SPECT in psychiatry and PET and SPECT in neurology".
PET and SPECT in Psychiatry
(2014)
PET and SPECT in Psychiatry showcases the combined expertise of renowned authors whose dedication to the investigation of psychiatric disease through nuclear medicine technology has achieved international recognition. The classical psychiatric disorders as well as other subjects – such as suicide, sleep, eating disorders, and autism – are discussed and the latest results in functional neuroimaging are detailed. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be valuable to all who have an interest in the field of neuroscience, from the psychiatrist and the radiologist/nuclear medicine specialist to the interested general practitioner and cognitive psychologist. It is the first volume of a trilogy on PET and SPECT imaging in the neurosciences; other volumes will focus on PET and SPECT in neurology and PET and SPECT of neurobiological systems.