Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 1 of 13
Back to Result List

Machbarkeitsstudie BubbleMeth - Biologische Methanisierung in einer Gegenstromblasensäule mit separatem Entgasungsreaktor

  • Im Zuge der Machbarkeitsstudie „BubbleMeth“ (FKZ BWFE310091) wurde die Machbarkeit der biologischen Methanisierung in einem neukonzipierten innovativen Pilot-Reaktor, basierend auf einer Gegenstromblasensäule mit separatem Entgasungs-Reaktor, sowohl für den Betrieb in der biologischen in-situ als auch der ex-situ Methanisierung demonstriert. Die Pilot-Anlage besteht aus einerIm Zuge der Machbarkeitsstudie „BubbleMeth“ (FKZ BWFE310091) wurde die Machbarkeit der biologischen Methanisierung in einem neukonzipierten innovativen Pilot-Reaktor, basierend auf einer Gegenstromblasensäule mit separatem Entgasungs-Reaktor, sowohl für den Betrieb in der biologischen in-situ als auch der ex-situ Methanisierung demonstriert. Die Pilot-Anlage besteht aus einer Gegenstromblasensäule und einem separaten Entgasungs-Reaktor und wurde an der Hochschule Offenburg geplant und gebaut. Die beiden Reaktor-Säulen haben jeweils eine Höhe von 10 m, einen Säulendurchmesser von 0,3 m und ein Gesamtreaktionsvolumen von etwa 1,1 m3. Der Gaseintrag erfolgt über Sinterplatten am Boden der Gegenstromblasensäule. In dieser Begasungssäule strömt die Flüssigkeit in entgegengesetzter Richtung zu den aufsteigenden Gasblasen und reichert sich durch den am Säulenfuß vorliegenden hydraulischen Druck zunehmend mit gelöstem Gas an. Die Säule, in die das Eduktgas am Säulenboden eingetragen wird, ist in Abbildung 1 auf der rechten Seite dargestellt und befindet sich auf der Saugseite einer Pumpe. Bei einer etwa 9,5 m hohen Wassersäule erhöht sich der Absolutdruck am Säulenboden auf etwa 1,95 bar, womit sich die Löslichkeit einer beliebigen Gaskomponente im Vergleich zum Atmosphärendruck bei konstanter Temperatur im Gleichgewicht gemäß dem Henry’schen Gesetz näherungsweise verdoppelt. Dieser Effekt wird genutzt, um die Verfügbarkeit von gelöstem Wasserstoff für die bei der biologischen Methanisierung katalytisch wirkenden hydrogenothrophen Archaeen zu erhöhen. Durch die Zirkulation der Flüssigkeit und den damit erreichten Druckwechsel wird auf der Seite des Entgasungs-Reaktors ein Ausgasen der relativ zum Atmosphärendruck übersättigten Gaskomponente ermöglicht. Durch die Zirkulation der Flüssigkeit über zwei Säulen wird außerdem die räumliche Trennung des Eduktgaseintrages und der Produktgasabtrennung erreicht. Die in-situ Methanisierung wurde in der Machbarkeitsstudie bis zu einer organischen Beladungsrate von 0,94 kg m-3 d-1 realisiert. Die erwartete Biogasbildungsrate (BGBR) bei vollständiger Umsetzung des Glucose/Fructose-Substrates zu Methan und CO2 lag bei ca. 0,686 m3 m-3 d-1. Die gemessene BGBR erreichte 0,61 ± 0,03 m3 m-3 d-1. Die geringe Abweichung kann auf eine zusätzliche Nutzung des Substrates für den Erhaltungsstoffwechsel des gesamten biologischen Systems zurückgeführt werden. Der maximale volumetrische H2-Eintrag betrug während der in-situ Methanisierung 0,785 m3 m-3 d-1 und ist dabei bezogen auf das gesamte Reaktionsvolumen von ca. 1,1 m3 in beiden Reaktorkolonnen. Das eingesetzte H2:CO2-Verhältnis lag bei 2,3, um einen vollständigen CO2-Umsatz und eine damit verbundene Verschiebung des pH-Wertes in den alkalischen Bereich bei der in-situ Methanisierung zu vermeiden. Die Produktgaszusammensetzung lag stabil bei ca. 80 Vol.% CH4, 18 Vol.% CO2 und geringen Mengen an Stickstoff, die im Wesentlichen aus der manuellen Entnahme der Gasproben resultieren, und entsprach der erwarteten Zusammensetzung bei dem vorgegebenen H2:CO2-Verhältnis. Im Anschluss an die Untersuchungsphase der in-situ Methanisierung wurde der Prozess auf die ex-situ Methanisierung umgestellt. Dazu wurde die OLR schrittweise reduziert und gleichzeitig der Eintrag von CO2 aus einer Druckgasflasche erhöht. Die ex-situ Methanisierung wurde im Rahmen der Machbarkeitsstudie bis zu einem volumenspezifischen CO2-Eintrag bezogen auf das Gesamtreaktionsvolumen von 1,1 m3 von 0,563 m3 CO2 m-3 d-1 durchgeführt. Der maximale volumetrische H2-Eintrag betrug während der ex-situ Methanisierung 2,168 m3 m-3 d-1. Das eingesetzte H2:CO2-Verhältnis lag bei 3,6 bis 3,9. Die Produktgaszusammensetzung lag stabil bei ca. 91 Vol.% CH4, 8 Vol.% CO2 und geringen Mengen an Stickstoff, und entsprach der erwarteten Zusammensetzung bei dem vorgegebenen H2:CO2-Verhältnis. Besonders bemerkenswert war, dass sowohl bei der in-situ als auch der ex-situ Methanisierung und den jeweils in der Machbarkeitsstudie eingesetzten maximalen volumetrischen H2-Einträge weder im austretenden Produktgas am Entgasungsreaktor noch im rezirkulierten Gas am Kopf des Begasungsreaktors Wasserstoff nachzuweisen war. Damit besteht großes Potenzial für eine weitere Steigerung der Methanbildungsrate. Aus diesem Grund sollen die Arbeiten zur biologischen Methanisierung in einem Innovationsprojekt fortgeführt werden. Die Anlage soll hinsichtlich ihrer Eignung in einer relevanten Einsatzumgebung zur Methanisierung von in Biogas enthaltenem CO2-bewertet werden. Dazu soll die Anlage außerdem mit einem preiswerten alkalischen Elektrolyseur kombiniert werden, um das Verfahren so kostengünstig wie möglich zu gestalten. Dieser Elektrolyseur soll in Anlehnung an die fluktuierende Energiebereitstellung Erneuerbarer Energien zyklisch betrieben werden und dabei vor allem zu Zeiten günstiger Spotmarktpreise in Betrieb sein.show moreshow less

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Document Type:Report
Zitierlink: https://opus.hs-offenburg.de/8320
Bibliografische Angaben
Title (German):Machbarkeitsstudie BubbleMeth - Biologische Methanisierung in einer Gegenstromblasensäule mit separatem Entgasungsreaktor
Author:Fabian HaitzStaff MemberGND, Christiane ZellStaff MemberGND, Ulrich HochbergStaff MemberGND, Manuel ScharffenbergStaff MemberGND
Year of Publication:2023
Page Number:30
URN:https://urn:nbn:de:bsz:ofb1-opus4-83204
Language:German
Inhaltliche Informationen
Institutes:Fakultät Maschinenbau und Verfahrenstechnik (M+V)
Institutes:Bibliografie
DDC classes:600 Technik, Medizin, angewandte Wissenschaften
600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau / 620 Ingenieurwissenschaften und zugeordnete Tätigkeitenn
GND Keyword:Methanisierung
Tag:Biologische Methanisierung
Funded by (textarea):Ministerium für Ernährung, Ländlichen Raum und Verbraucherschutz Baden-Württemberg
Funding number:BWFE310091
Formale Angaben
Relevance:Keine Relevanz
Open Access: Open Access 
 Bronze 
Licence (German):License LogoUrheberrechtlich geschützt